SEPT: Standard-Definition Map Enhanced Scene Perception and Topology Reasoning for Autonomous Driving
- URL: http://arxiv.org/abs/2505.12246v1
- Date: Sun, 18 May 2025 05:57:31 GMT
- Title: SEPT: Standard-Definition Map Enhanced Scene Perception and Topology Reasoning for Autonomous Driving
- Authors: Muleilan Pei, Jiayao Shan, Peiliang Li, Jieqi Shi, Jing Huo, Yang Gao, Shaojie Shen,
- Abstract summary: We propose a Standard-Definition (SD) Map Enhanced Perception and Topology reasoning framework.<n>Our framework significantly improves both scene perception and topology reasoning, outperforming existing methods by a substantial margin.
- Score: 33.58763384551353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online scene perception and topology reasoning are critical for autonomous vehicles to understand their driving environments, particularly for mapless driving systems that endeavor to reduce reliance on costly High-Definition (HD) maps. However, recent advances in online scene understanding still face limitations, especially in long-range or occluded scenarios, due to the inherent constraints of onboard sensors. To address this challenge, we propose a Standard-Definition (SD) Map Enhanced scene Perception and Topology reasoning (SEPT) framework, which explores how to effectively incorporate the SD map as prior knowledge into existing perception and reasoning pipelines. Specifically, we introduce a novel hybrid feature fusion strategy that combines SD maps with Bird's-Eye-View (BEV) features, considering both rasterized and vectorized representations, while mitigating potential misalignment between SD maps and BEV feature spaces. Additionally, we leverage the SD map characteristics to design an auxiliary intersection-aware keypoint detection task, which further enhances the overall scene understanding performance. Experimental results on the large-scale OpenLane-V2 dataset demonstrate that by effectively integrating SD map priors, our framework significantly improves both scene perception and topology reasoning, outperforming existing methods by a substantial margin.
Related papers
- SMART: Advancing Scalable Map Priors for Driving Topology Reasoning [24.614973933683352]
Topology reasoning is crucial for autonomous driving as it enables comprehensive understanding of connectivity and relationships between lanes and traffic elements.<n>Recent approaches have shown success in perceiving driving topology using vehicle-mounted sensors.<n>We identify that the key factor in scalable lane perception and topology reasoning is the elimination of this sensor-dependent feature.
arXiv Detail & Related papers (2025-02-06T18:59:57Z) - MapExpert: Online HD Map Construction with Simple and Efficient Sparse Map Element Expert [7.086030137483952]
We introduce an expert-based online HD map method, termed MapExpert.<n>MapExpert utilizes sparse experts, distributed by our routers, to describe various non-cubic map elements accurately.
arXiv Detail & Related papers (2024-12-17T09:19:44Z) - TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles.<n>Online construction of HD maps using on-board sensors has emerged as a promising solution.<n>This paper proposes the PriorDrive framework to address these limitations by harnessing the power of prior maps.
arXiv Detail & Related papers (2024-09-09T06:17:46Z) - Enhancing Online Road Network Perception and Reasoning with Standard Definition Maps [14.535963852751635]
We focus on leveraging lightweight and scalable priors-Standard Definition (SD) maps-in the development of online vectorized HD map representations.
A key finding is that SD map encoders are model agnostic and can be quickly adapted to new architectures that utilize bird's eye view (BEV) encoders.
Our results show that making use of SD maps as priors for the online mapping task can significantly speed up convergence and boost the performance of the online centerline perception task by 30% (mAP)
arXiv Detail & Related papers (2024-08-01T19:39:55Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.<n>To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
We present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view.
Our model runs at 25 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.
arXiv Detail & Related papers (2022-11-15T13:52:41Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.