A universal policy wrapper with guarantees
- URL: http://arxiv.org/abs/2505.12354v1
- Date: Sun, 18 May 2025 10:37:27 GMT
- Title: A universal policy wrapper with guarantees
- Authors: Anton Bolychev, Georgiy Malaniya, Grigory Yaremenko, Anastasia Krasnaya, Pavel Osinenko,
- Abstract summary: We introduce a universal policy wrapper for reinforcement learning agents.<n>Our wrapper selectively switches between a high-performing base policy and a fallback policy.<n>It operates without needing additional system knowledge or online constrained optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a universal policy wrapper for reinforcement learning agents that ensures formal goal-reaching guarantees. In contrast to standard reinforcement learning algorithms that excel in performance but lack rigorous safety assurances, our wrapper selectively switches between a high-performing base policy -- derived from any existing RL method -- and a fallback policy with known convergence properties. Base policy's value function supervises this switching process, determining when the fallback policy should override the base policy to ensure the system remains on a stable path. The analysis proves that our wrapper inherits the fallback policy's goal-reaching guarantees while preserving or improving upon the performance of the base policy. Notably, it operates without needing additional system knowledge or online constrained optimization, making it readily deployable across diverse reinforcement learning architectures and tasks.
Related papers
- Learning Deterministic Policies with Policy Gradients in Constrained Markov Decision Processes [59.27926064817273]
We introduce an exploration-agnostic algorithm, called C-PG, which enjoys global last-iterate convergence guarantees under domination assumptions.<n>We empirically validate both the action-based (C-PGAE) and parameter-based (C-PGPE) variants of C-PG on constrained control tasks.
arXiv Detail & Related papers (2025-06-06T10:29:05Z) - A Provable Approach for End-to-End Safe Reinforcement Learning [17.17447653795906]
A longstanding goal in safe reinforcement learning (RL) is to ensure the safety of a policy throughout the entire process.<n>We propose a method, called Provably Lifetime Safe RL (PLS), that integrates offline safe RL with safe policy deployment.
arXiv Detail & Related papers (2025-05-28T00:48:20Z) - Multi-CALF: A Policy Combination Approach with Statistical Guarantees [0.0]
We introduce Multi-CALF, an algorithm that intelligently combines reinforcement learning policies based on their relative value improvements.<n>Our approach integrates a standard RL policy with a theoretically-backed alternative policy, inheriting formal stability guarantees.
arXiv Detail & Related papers (2025-05-18T10:30:24Z) - SPoRt -- Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL [54.022106606140774]
We present theoretical results that provide a bound on the probability of violating a safety property for a new task-specific policy in a model-free, episodic setup.<n>We also present SPoRt, which enables the user to trade off safety guarantees in exchange for task-specific performance.
arXiv Detail & Related papers (2025-04-08T19:09:07Z) - Policy Bifurcation in Safe Reinforcement Learning [35.75059015441807]
In some scenarios, the feasible policy should be discontinuous or multi-valued, interpolating between discontinuous local optima can inevitably lead to constraint violations.
We are the first to identify the generating mechanism of such a phenomenon, and employ topological analysis to rigorously prove the existence of bifurcation in safe RL.
We propose a safe RL algorithm called multimodal policy optimization (MUPO), which utilizes a Gaussian mixture distribution as the policy output.
arXiv Detail & Related papers (2024-03-19T15:54:38Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
We show that the trust region constraint over policies can be safely substituted by a trust-region-free constraint without compromising the underlying monotonic improvement guarantee.
We call the resulting algorithm Trust-REgion-Free Policy Optimization (TREFree) explicit as it is free of any trust region constraints.
arXiv Detail & Related papers (2023-02-15T23:10:06Z) - Bounded Robustness in Reinforcement Learning via Lexicographic
Objectives [54.00072722686121]
Policy robustness in Reinforcement Learning may not be desirable at any cost.
We study how policies can be maximally robust to arbitrary observational noise.
We propose a robustness-inducing scheme, applicable to any policy algorithm, that trades off expected policy utility for robustness.
arXiv Detail & Related papers (2022-09-30T08:53:18Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety
Constraints in Finite MDPs [71.47895794305883]
We study the problem of Safe Policy Improvement (SPI) under constraints in the offline Reinforcement Learning setting.
We present an SPI for this RL setting that takes into account the preferences of the algorithm's user for handling the trade-offs for different reward signals.
arXiv Detail & Related papers (2021-05-31T21:04:21Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.