A Finite-Sample Analysis of Distributionally Robust Average-Reward Reinforcement Learning
- URL: http://arxiv.org/abs/2505.12462v1
- Date: Sun, 18 May 2025 15:34:45 GMT
- Title: A Finite-Sample Analysis of Distributionally Robust Average-Reward Reinforcement Learning
- Authors: Zachary Roch, Chi Zhang, George Atia, Yue Wang,
- Abstract summary: We propose Halpern Iteration (RHI), the first algorithm with provable finite-sample complexity guarantee.<n>RHI attains an $epsilon$-optimal policy with near-optimal sample complexity of $tildemathcal Oleft(fracSAmathcal H22right)$.<n>Our work thus constitutes a significant advancement in enhancing the practical applicability of robust average-reward methods to complex, real-world problems.
- Score: 5.566883737764277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust reinforcement learning (RL) under the average-reward criterion is crucial for long-term decision making under potential environment mismatches, yet its finite-sample complexity study remains largely unexplored. Existing works offer algorithms with asymptotic guarantees, but the absence of finite-sample analysis hinders its principled understanding and practical deployment, especially in data-limited settings. We close this gap by proposing Robust Halpern Iteration (RHI), the first algorithm with provable finite-sample complexity guarantee. Under standard uncertainty sets -- including contamination sets and $\ell_p$-norm balls -- RHI attains an $\epsilon$-optimal policy with near-optimal sample complexity of $\tilde{\mathcal O}\left(\frac{SA\mathcal H^{2}}{\epsilon^{2}}\right)$, where $S$ and $A$ denote the numbers of states and actions, and $\mathcal H$ is the robust optimal bias span. This result gives the first polynomial sample complexity guarantee for robust average-reward RL. Moreover, our RHI's independence from prior knowledge distinguishes it from many previous average-reward RL studies. Our work thus constitutes a significant advancement in enhancing the practical applicability of robust average-reward methods to complex, real-world problems.
Related papers
- A Variance-Reduced Cubic-Regularized Newton for Policy Optimization [6.52142708235708]
Existing second-order methods often suffer from suboptimal sample complexity or unrealistic assumptions about importance sampling.<n>To overcome these limitations, we propose VR-CR-PN, a variance-regularized Newton-reduced estimator.<n>As an additional contribution, we introduce a novel horizon for the expected return function, allowing the algorithm to achieve a uniform sample complexity.
arXiv Detail & Related papers (2025-07-14T10:04:02Z) - Sample Complexity of Distributionally Robust Average-Reward Reinforcement Learning [5.8191965840377735]
We propose two algorithms that achieve near-optimal sample complexity.<n>We prove that both algorithms attain a sample complexity of $widetildeOleft(|mathbfS||mathbfA| t_mathrmmix2varepsilon-2right)$ for estimating the optimal policy.<n>This represents the first finite-sample convergence guarantee for DR average-reward reinforcement learning.
arXiv Detail & Related papers (2025-05-15T06:42:25Z) - Finite-Sample Analysis of Policy Evaluation for Robust Average Reward Reinforcement Learning [33.71515983281633]
We present first finite-sample analysis for policy evaluation in robust average-rewards.<n>Our approach builds upon Multi-Level Monte Carlo (MLMC) techniques to estimate the robust Bellman operator efficiently.<n>Our method achieves the order-optimal sample complexity of $tildemathcalO(epsilon-2)$ for robust policy evaluation and robust average reward estimation.
arXiv Detail & Related papers (2025-02-24T03:55:09Z) - Span-Agnostic Optimal Sample Complexity and Oracle Inequalities for Average-Reward RL [6.996002801232415]
We study the sample complexity of finding an $varepsilon$-optimal policy in Markov Decision Processes (MDPs) with a generative model.<n>We develop the first algorithms matching the optimal span-based complexity without $H$ knowledge.
arXiv Detail & Related papers (2025-02-16T19:10:55Z) - Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits [49.96531901205305]
We analyze $f$-divergence-regularized offline policy learning.<n>For reverse Kullback-Leibler (KL) divergence, we give the first $tildeO(epsilon-1)$ sample complexity under single-policy concentrability.<n>We extend our analysis to dueling bandits, and we believe these results take a significant step toward a comprehensive understanding of $f$-divergence-regularized policy learning.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - Uncertainty-Aware Reward-Free Exploration with General Function Approximation [69.27868448449755]
In this paper, we propose a reward-free reinforcement learning algorithm called alg.
The key idea behind our algorithm is an uncertainty-aware intrinsic reward for exploring the environment.
Experiment results show that GFA-RFE outperforms or is comparable to the performance of state-of-the-art unsupervised RL algorithms.
arXiv Detail & Related papers (2024-06-24T01:37:18Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.