Resolving Latency and Inventory Risk in Market Making with Reinforcement Learning
- URL: http://arxiv.org/abs/2505.12465v1
- Date: Sun, 18 May 2025 15:43:41 GMT
- Title: Resolving Latency and Inventory Risk in Market Making with Reinforcement Learning
- Authors: Junzhe Jiang, Chang Yang, Xinrun Wang, Zhiming Li, Xiao Huang, Bo Li,
- Abstract summary: The latency of the exchanges in Market Making (MM) is inevitable due to hardware limitations, system processing times, delays in receiving data from exchanges, the time required for order transmission to reach the market, etc.<n>Existing reinforcement learning (RL) methods for Market Making (MM) overlook the impact of these latency.<n>We propose Relaver, an RL-based method for MM to tackle the latency and inventory risk issues.
- Score: 17.821508944254237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latency of the exchanges in Market Making (MM) is inevitable due to hardware limitations, system processing times, delays in receiving data from exchanges, the time required for order transmission to reach the market, etc. Existing reinforcement learning (RL) methods for Market Making (MM) overlook the impact of these latency, which can lead to unintended order cancellations due to price discrepancies between decision and execution times and result in undesired inventory accumulation, exposing MM traders to increased market risk. Therefore, these methods cannot be applied in real MM scenarios. To address these issues, we first build a realistic MM environment with random delays of 30-100 milliseconds for order placement and market information reception, and implement a batch matching mechanism that collects orders within every 500 milliseconds before matching them all at once, simulating the batch auction mechanisms adopted by some exchanges. Then, we propose Relaver, an RL-based method for MM to tackle the latency and inventory risk issues. The three main contributions of Relaver are: i) we introduce an augmented state-action space that incorporates order hold time alongside price and volume, enabling Relaver to optimize execution strategies under latency constraints and time-priority matching mechanisms, ii) we leverage dynamic programming (DP) to guide the exploration of RL training for better policies, iii) we train a market trend predictor, which can guide the agent to intelligently adjust the inventory to reduce the risk. Extensive experiments and ablation studies on four real-world datasets demonstrate that \textsc{Relaver} significantly improves the performance of state-of-the-art RL-based MM strategies across multiple metrics.
Related papers
- MTS: A Deep Reinforcement Learning Portfolio Management Framework with Time-Awareness and Short-Selling [0.8642326601683299]
This paper introduces a Deep Reinforcement Learning Portfolio Management Framework with Time-Awareness and Short-Selling.<n>It addresses limitations in dynamic risk management, exploitation of temporal markets, and incorporation of complex trading strategies such as short-selling.<n>It consistently achieves higher cumulative returns, Sharpe, Omega, and Sortino ratios, underscoring its effectiveness in balancing risk and return.
arXiv Detail & Related papers (2025-03-06T06:41:17Z) - Self-Regulation and Requesting Interventions [63.5863047447313]
We propose an offline framework that trains a "helper" policy to request interventions.<n>We score optimal intervention timing with PRMs and train the helper model on these labeled trajectories.<n>This offline approach significantly reduces costly intervention calls during training.
arXiv Detail & Related papers (2025-02-07T00:06:17Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
We propose an immersion-aware model trading framework that facilitates data provision for services while ensuring privacy through federated learning (FL)<n>We design an incentive mechanism to incentivize metaverse users (MUs) to contribute high-value models under resource constraints.<n>We develop a fully distributed dynamic reward algorithm based on deep reinforcement learning, without accessing any private information about MUs and other MSPs.
arXiv Detail & Related papers (2024-10-25T16:20:46Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading [20.3106468936159]
Reinforcement learning (RL) has become another appealing approach for high-frequency trading (HFT)
We propose a novel Memory Augmented Context-aware Reinforcement learning method On HFT, empha.k.a. MacroHFT.
We show that MacroHFT can achieve state-of-the-art performance on minute-level trading tasks.
arXiv Detail & Related papers (2024-06-20T17:48:24Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Market Making with Deep Reinforcement Learning from Limit Order Books [2.569647910019739]
This paper proposes a RL agent for market making with limit order book (LOB) data.
We leverage a neural network with convolutional filters and attention mechanism (Attn-LOB) for feature extraction.
We design a new continuous action space and a hybrid reward function for the MM task.
arXiv Detail & Related papers (2023-05-25T08:05:19Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
This paper presents a model to generate profitable trades in the stock market using Deep Reinforcement Learning (DRL) algorithms.
We formulate the trading problem as a Partially Observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market.
We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm reporting a 2.68 Sharpe Ratio on unseen data set.
arXiv Detail & Related papers (2022-07-05T11:34:29Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.