Private Statistical Estimation via Truncation
- URL: http://arxiv.org/abs/2505.12541v1
- Date: Sun, 18 May 2025 20:38:38 GMT
- Title: Private Statistical Estimation via Truncation
- Authors: Manolis Zampetakis, Felix Zhou,
- Abstract summary: We introduce a novel framework for differentially private statistical estimation via data truncation, addressing a key challenge in DP estimation when the data support is unbounded.<n>By leveraging techniques from truncated statistics, we develop computationally efficient DP estimators for exponential family distributions.
- Score: 2.3910125679710665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel framework for differentially private (DP) statistical estimation via data truncation, addressing a key challenge in DP estimation when the data support is unbounded. Traditional approaches rely on problem-specific sensitivity analysis, limiting their applicability. By leveraging techniques from truncated statistics, we develop computationally efficient DP estimators for exponential family distributions, including Gaussian mean and covariance estimation, achieving near-optimal sample complexity. Previous works on exponential families only consider bounded or one-dimensional families. Our approach mitigates sensitivity through truncation while carefully correcting for the introduced bias using maximum likelihood estimation and DP stochastic gradient descent. Along the way, we establish improved uniform convergence guarantees for the log-likelihood function of exponential families, which may be of independent interest. Our results provide a general blueprint for DP algorithm design via truncated statistics.
Related papers
- Statistical Inference for Differentially Private Stochastic Gradient Descent [14.360996967498002]
This paper bridges the gap between existing statistical methods and Differentially Private Gradient Descent (DP-SGD)<n>For the output of DP-SGD, we show that the variance decomposes into statistical, sampling, and privacy-induced components.<n>Two methods are proposed for constructing valid confidence intervals: the plug-in method and the random scaling method.
arXiv Detail & Related papers (2025-07-28T06:45:15Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.<n>Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.<n>We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.<n>We propose a method called Stratified Prediction-Powered Inference (StratPPI)<n>We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Entrywise Inference for Missing Panel Data: A Simple and Instance-Optimal Approach [27.301741710016223]
We consider inferential questions associated with the missing data version of panel data induced by staggered adoption.
We develop and analyze a data-driven procedure for constructing entrywise confidence intervals with pre-specified coverage.
We prove non-asymptotic and high-probability bounds on its error in estimating each missing entry.
arXiv Detail & Related papers (2024-01-24T18:58:18Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
We consider the problem of learning the exact skeleton of general discrete Bayesian networks from potentially corrupted data.
We propose to optimize the most adverse risk over a family of distributions within bounded Wasserstein distance or KL divergence to the empirical distribution.
We present efficient algorithms and show the proposed methods are closely related to the standard regularized regression approach.
arXiv Detail & Related papers (2023-11-10T15:33:19Z) - Overlapping Batch Confidence Intervals on Statistical Functionals
Constructed from Time Series: Application to Quantiles, Optimization, and
Estimation [5.068678962285631]
We propose a confidence interval procedure for statistical functionals constructed using data from a stationary time series.
The OBx limits, certain functionals of the Wiener process parameterized by the size of the batches and the extent of their overlap, form the essential machinery for characterizing dependence.
arXiv Detail & Related papers (2023-07-17T16:21:48Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Propose, Test, Release: Differentially private estimation with high
probability [9.25177374431812]
We introduce a new general version of the PTR mechanism that allows us to derive high probability error bounds for differentially private estimators.
Our algorithms provide the first statistical guarantees for differentially private estimation of the median and mean without any boundedness assumptions on the data.
arXiv Detail & Related papers (2020-02-19T01:29:05Z) - Statistical Inference for Model Parameters in Stochastic Gradient
Descent [45.29532403359099]
gradient descent coefficients (SGD) has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency.
We investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain conditions.
arXiv Detail & Related papers (2016-10-27T07:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.