CURE: Concept Unlearning via Orthogonal Representation Editing in Diffusion Models
- URL: http://arxiv.org/abs/2505.12677v1
- Date: Mon, 19 May 2025 03:53:06 GMT
- Title: CURE: Concept Unlearning via Orthogonal Representation Editing in Diffusion Models
- Authors: Shristi Das Biswas, Arani Roy, Kaushik Roy,
- Abstract summary: CURE is a training-free concept unlearning framework that operates directly in the weight space of pre-trained diffusion models.<n>The Spectral Eraser identifies and isolates features unique to the undesired concept while preserving safe attributes.<n>CURE achieves a more efficient and thorough removal for targeted artistic styles, objects, identities, or explicit content.
- Score: 6.738409533239947
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As Text-to-Image models continue to evolve, so does the risk of generating unsafe, copyrighted, or privacy-violating content. Existing safety interventions - ranging from training data curation and model fine-tuning to inference-time filtering and guidance - often suffer from incomplete concept removal, susceptibility to jail-breaking, computational inefficiency, or collateral damage to unrelated capabilities. In this paper, we introduce CURE, a training-free concept unlearning framework that operates directly in the weight space of pre-trained diffusion models, enabling fast, interpretable, and highly specific suppression of undesired concepts. At the core of our method is the Spectral Eraser, a closed-form, orthogonal projection module that identifies discriminative subspaces using Singular Value Decomposition over token embeddings associated with the concepts to forget and retain. Intuitively, the Spectral Eraser identifies and isolates features unique to the undesired concept while preserving safe attributes. This operator is then applied in a single step update to yield an edited model in which the target concept is effectively unlearned - without retraining, supervision, or iterative optimization. To balance the trade-off between filtering toxicity and preserving unrelated concepts, we further introduce an Expansion Mechanism for spectral regularization which selectively modulates singular vectors based on their relative significance to control the strength of forgetting. All the processes above are in closed-form, guaranteeing extremely efficient erasure in only $2$ seconds. Benchmarking against prior approaches, CURE achieves a more efficient and thorough removal for targeted artistic styles, objects, identities, or explicit content, with minor damage to original generation ability and demonstrates enhanced robustness against red-teaming.
Related papers
- TRACE: Trajectory-Constrained Concept Erasure in Diffusion Models [0.0]
Concept erasure aims to remove or suppress specific concept information in a generative model.<n>Trajectory-Constrained Attentional Concept Erasure (TRACE) is a novel method to erase targeted concepts from diffusion models.<n>TRACE achieves state-of-the-art performance, outperforming recent methods such as ANT, EraseAnything, and MACE in terms of removal efficacy and output quality.
arXiv Detail & Related papers (2025-05-29T10:15:22Z) - Set You Straight: Auto-Steering Denoising Trajectories to Sidestep Unwanted Concepts [12.04985139116705]
We introduce a finetuning framework, dubbed ANT, which guides deNoising Trajectories to avoid unwanted concepts.<n>ANT is built on a key insight: reversing the condition direction of classifier-free guidance during mid-to-late denoising stages.<n>For single-concept erasure, we propose an augmentation-enhanced weight saliency map, enabling more thorough and efficient erasure.<n>For multi-concept erasure, our objective function offers a versatile plug-and-play solution that significantly boosts performance.
arXiv Detail & Related papers (2025-04-17T09:29:30Z) - Fine-Grained Erasure in Text-to-Image Diffusion-based Foundation Models [56.35484513848296]
FADE (Fine grained Attenuation for Diffusion Erasure) is an adjacency-aware unlearning algorithm for text-to-image generative models.<n>It removes target concepts with minimal impact on correlated concepts, achieving a 12% improvement in retention performance over state-of-the-art methods.
arXiv Detail & Related papers (2025-03-25T15:49:48Z) - Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion [56.35484513848296]
This research introduces continual unlearning', a novel paradigm that enables the targeted removal of multiple specific concepts from foundational generative models.<n>We propose Decremental Unlearning without Generalization Erosion (DUGE) algorithm which selectively unlearns the generation of undesired concepts.
arXiv Detail & Related papers (2025-03-17T23:17:16Z) - Modular Customization of Diffusion Models via Blockwise-Parameterized Low-Rank Adaptation [73.16975077770765]
Modular customization is essential for applications like concept stylization and multi-concept customization.<n>Instant merging methods often cause identity loss and interference of individual merged concepts.<n>We propose BlockLoRA, an instant merging method designed to efficiently combine multiple concepts while accurately preserving individual concepts' identity.
arXiv Detail & Related papers (2025-03-11T16:10:36Z) - SPEED: Scalable, Precise, and Efficient Concept Erasure for Diffusion Models [41.284399182295026]
We introduce SPEED, a model editing-based concept erasure approach that leverages null-space constraints for scalable, precise, and efficient erasure.<n> SPEED consistently outperforms existing methods in prior preservation while achieving efficient and high-fidelity concept erasure.
arXiv Detail & Related papers (2025-03-10T14:40:01Z) - DuMo: Dual Encoder Modulation Network for Precise Concept Erasure [75.05165577219425]
We propose our Dual encoder Modulation network (DuMo) which achieves precise erasure of inappropriate target concepts with minimum impairment to non-target concepts.<n>Our method achieves state-of-the-art performance on Explicit Content Erasure, Cartoon Concept Removal and Artistic Style Erasure, clearly outperforming alternative methods.
arXiv Detail & Related papers (2025-01-02T07:47:34Z) - Precise, Fast, and Low-cost Concept Erasure in Value Space: Orthogonal Complement Matters [38.355389084255386]
We propose a precise, fast, and low-cost concept erasure method called Adaptive Value Decomposer (AdaVD)<n>AdaVD excels in both single and multiple concept erasure, showing 2 to 10 times improvement in prior preservation.
arXiv Detail & Related papers (2024-12-09T01:56:25Z) - Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction [88.18235230849554]
Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs.<n>We leverage safe embeddings and a modified diffusion process with weighted tunable summation in the latent space to generate safer images.<n>We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models.
arXiv Detail & Related papers (2024-11-21T09:47:13Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
We propose a novel concept domain correction framework named textbfDoCo (textbfDomaintextbfCorrection)<n>By aligning the output domains of sensitive and anchor concepts through adversarial training, our approach ensures comprehensive unlearning of target concepts.<n>We also introduce a concept-preserving gradient surgery technique that mitigates conflicting gradient components, thereby preserving the model's utility while unlearning specific concepts.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bell is a model-agnostic red-teaming tool for T2I diffusion models.
It identifies problematic prompts for diffusion models with the corresponding generation of inappropriate content.
Our results show that Ring-A-Bell, by manipulating safe prompting benchmarks, can transform prompts that were originally regarded as safe to evade existing safety mechanisms.
arXiv Detail & Related papers (2023-10-16T02:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.