Counterfactual Explanations for Continuous Action Reinforcement Learning
- URL: http://arxiv.org/abs/2505.12701v1
- Date: Mon, 19 May 2025 04:41:54 GMT
- Title: Counterfactual Explanations for Continuous Action Reinforcement Learning
- Authors: Shuyang Dong, Shangtong Zhang, Lu Feng,
- Abstract summary: Reinforcement Learning (RL) has shown great promise in domains like healthcare and robotics but often struggles with adoption due to its lack of interpretability.<n>Counterfactual explanations, which address "what if" scenarios, provide a promising avenue for understanding RL decisions but remain underexplored for continuous action spaces.<n>We propose a novel approach for generating counterfactual explanations in continuous action RL by computing alternative action sequences that improve outcomes while minimizing deviations from the original sequence.
- Score: 17.78966386098786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has shown great promise in domains like healthcare and robotics but often struggles with adoption due to its lack of interpretability. Counterfactual explanations, which address "what if" scenarios, provide a promising avenue for understanding RL decisions but remain underexplored for continuous action spaces. We propose a novel approach for generating counterfactual explanations in continuous action RL by computing alternative action sequences that improve outcomes while minimizing deviations from the original sequence. Our approach leverages a distance metric for continuous actions and accounts for constraints such as adhering to predefined policies in specific states. Evaluations in two RL domains, Diabetes Control and Lunar Lander, demonstrate the effectiveness, efficiency, and generalization of our approach, enabling more interpretable and trustworthy RL applications.
Related papers
- Behaviour Discovery and Attribution for Explainable Reinforcement Learning [6.123880364445758]
We propose a framework for behavior discovery and action attribution to behaviors in offline RL trajectories.<n>Our method identifies meaningful behavioral segments, enabling more precise and granular explanations.<n>This approach is adaptable across diverse environments with minimal modifications.
arXiv Detail & Related papers (2025-03-19T08:06:00Z) - Behavior-Regularized Diffusion Policy Optimization for Offline Reinforcement Learning [22.333460316347264]
We introduce BDPO, a principled behavior-regularized RL framework tailored for diffusion-based policies.<n>We develop an efficient two-time-scale actor-critic RL algorithm that produces the optimal policy while respecting the behavior constraint.
arXiv Detail & Related papers (2025-02-07T09:30:35Z) - Demystifying Reinforcement Learning in Production Scheduling via Explainable AI [0.7515066610159392]
Deep Reinforcement Learning (DRL) is a frequently employed technique to solve scheduling problems.
Although DRL agents ace at delivering viable results in short computing times, their reasoning remains opaque.
We apply two explainable AI (xAI) frameworks to describe the reasoning behind scheduling decisions of a specialized DRL agent in a flow production.
arXiv Detail & Related papers (2024-08-19T09:39:01Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.<n>We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)<n>Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.<n>We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Learning Interpretable Policies in Hindsight-Observable POMDPs through
Partially Supervised Reinforcement Learning [57.67629402360924]
We introduce the Partially Supervised Reinforcement Learning (PSRL) framework.
At the heart of PSRL is the fusion of both supervised and unsupervised learning.
We show that PSRL offers a potent balance, enhancing model interpretability while preserving, and often significantly outperforming, the performance benchmarks set by traditional methods.
arXiv Detail & Related papers (2024-02-14T16:23:23Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Budgeting Counterfactual for Offline RL [25.918011878015136]
We propose an approach to explicitly bound the amount of out-of-distribution actions during training.
We show that the overall performance of our method is better than the state-of-the-art offline RL methods on tasks in the widely-used D4RL benchmarks.
arXiv Detail & Related papers (2023-07-12T17:47:35Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
We propose an algorithm for batch RL, where effective policies are learned using only a fixed offline dataset instead of online interactions with the environment.
The limited data in batch RL produces inherent uncertainty in value estimates of states/actions that were insufficiently represented in the training data.
We propose to mitigate this issue via two straightforward penalties: a policy-constraint to reduce this divergence and a value-constraint that discourages overly optimistic estimates.
arXiv Detail & Related papers (2021-02-18T08:54:14Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.