The Gaussian Latent Machine: Efficient Prior and Posterior Sampling for Inverse Problems
- URL: http://arxiv.org/abs/2505.12836v1
- Date: Mon, 19 May 2025 08:21:23 GMT
- Title: The Gaussian Latent Machine: Efficient Prior and Posterior Sampling for Inverse Problems
- Authors: Muhamed Kuric, Martin Zach, Andreas Habring, Michael Unser, Thomas Pock,
- Abstract summary: We show that a product-of-experts-type model can be easily lifted into a novel latent variable model.<n>This leads to a general sampling approach that unifies and generalizes many existing sampling algorithms.
- Score: 19.914084083626694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of sampling from a product-of-experts-type model that encompasses many standard prior and posterior distributions commonly found in Bayesian imaging. We show that this model can be easily lifted into a novel latent variable model, which we refer to as a Gaussian latent machine. This leads to a general sampling approach that unifies and generalizes many existing sampling algorithms in the literature. Most notably, it yields a highly efficient and effective two-block Gibbs sampling approach in the general case, while also specializing to direct sampling algorithms in particular cases. Finally, we present detailed numerical experiments that demonstrate the efficiency and effectiveness of our proposed sampling approach across a wide range of prior and posterior sampling problems from Bayesian imaging.
Related papers
- Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.<n>We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.<n>Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds [0.18416014644193066]
We present a new sampling-based approach for enabling efficient computation of low-rank Bayesian matrix completion.
We show that our approach resolves the sampling difficulties encountered by standard Gibbs samplers for the common two-matrix factorization used in matrix completion.
Numerical examples demonstrate superior sampling performance, including better mixing and faster convergence to a stationary distribution.
arXiv Detail & Related papers (2024-10-27T03:12:53Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models.
We theoretically analyze our algorithm showing provable sample recovery in a linear model setting.
arXiv Detail & Related papers (2023-07-02T17:21:30Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
This paper introduces a plug-and-play sampling algorithm that leverages variable splitting to efficiently sample from a posterior distribution.
It divides the challenging task of posterior sampling into two simpler sampling problems.
Its performance is compared to recent state-of-the-art optimization and sampling methods.
arXiv Detail & Related papers (2023-04-21T17:17:51Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Nested sampling with any prior you like [0.0]
Bijectors trained on samples from a desired prior density provide a general-purpose method for constructing transformations.
We demonstrate the use of trained bijectors in conjunction with nested sampling on a number of examples from cosmology.
arXiv Detail & Related papers (2021-02-24T18:45:13Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
We present a novel Thompson-sampling-based algorithm for partial monitoring.
We prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrmO(log T)$ for a linearized variant of the problem with local observability.
arXiv Detail & Related papers (2020-06-17T05:48:33Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z) - Ensemble Sampling [18.85309520133554]
This paper develops ensemble sampling, which aims to approximate Thompson sampling while maintaining tractability even in the face of complex models such as neural networks.
We establish a theoretical basis that supports the approach and present computational results that offer further insight.
arXiv Detail & Related papers (2017-05-20T19:36:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.