MindOmni: Unleashing Reasoning Generation in Vision Language Models with RGPO
- URL: http://arxiv.org/abs/2505.13031v2
- Date: Wed, 11 Jun 2025 15:44:25 GMT
- Title: MindOmni: Unleashing Reasoning Generation in Vision Language Models with RGPO
- Authors: Yicheng Xiao, Lin Song, Yukang Chen, Yingmin Luo, Yuxin Chen, Yukang Gan, Wei Huang, Xiu Li, Xiaojuan Qi, Ying Shan,
- Abstract summary: Recent text-to-image systems face limitations in handling multimodal inputs and complex reasoning tasks.<n>We introduce Mind Omni, a unified multimodal large language model that addresses these challenges by incorporating reasoning generation through reinforcement learning.
- Score: 87.52631406241456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent text-to-image systems face limitations in handling multimodal inputs and complex reasoning tasks. We introduce MindOmni, a unified multimodal large language model that addresses these challenges by incorporating reasoning generation through reinforcement learning. MindOmni leverages a three-phase training strategy: i) design of a unified vision language model with a decoder-only diffusion module, ii) supervised fine-tuning with Chain-of-Thought (CoT) instruction data, and iii) our proposed Reasoning Generation Policy Optimization (RGPO) algorithm, utilizing multimodal feedback to effectively guide policy updates. Experimental results demonstrate that MindOmni outperforms existing models, achieving impressive performance on both understanding and generation benchmarks, meanwhile showcasing advanced fine-grained reasoning generation capabilities, especially with mathematical reasoning instruction. All codes will be made public at https://github.com/TencentARC/MindOmni
Related papers
- Reinforcing Multimodal Understanding and Generation with Dual Self-rewards [56.08202047680044]
Large language models (LLMs) unify cross-model understanding and generation into a single framework.<n>Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks.<n>We introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs.
arXiv Detail & Related papers (2025-06-09T17:38:45Z) - Decoupled Visual Interpretation and Linguistic Reasoning for Math Problem Solving [57.22004912994658]
Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs)<n>This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework.
arXiv Detail & Related papers (2025-05-23T08:18:00Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - MUSE-VL: Modeling Unified VLM through Semantic Discrete Encoding [6.538592344967826]
We introduce MUSE-VL, a Unified Vision-Language Model Semantic through discrete semantic.<n>Our method improved the understanding performance by 4.8% compared to the previous SOTA Emu3 and surpassed the dedicated understanding model LLaVA-NeXT 34B by 3.7%.
arXiv Detail & Related papers (2024-11-26T03:33:52Z) - What Makes Large Language Models Reason in (Multi-Turn) Code Generation? [28.614888506962988]
Chain-of-thought has established itself as a popular vehicle for improving the outputs of large language models (LLMs)<n>We investigate the effects of a wide range of prompting strategies with a focus on automatic re-prompting over multiple turns and computational requirements.<n>Our study reveals strategies that consistently improve performance across all models with small and large sampling budgets.
arXiv Detail & Related papers (2024-10-10T16:53:10Z) - MIO: A Foundation Model on Multimodal Tokens [74.85153216521945]
We introduce MIO, a novel foundation model built on multimodal tokens.<n>MIO is capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner.
arXiv Detail & Related papers (2024-09-26T09:57:16Z) - OmniBench: Towards The Future of Universal Omni-Language Models [63.16606414452612]
We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously.<n>Our evaluation reveals that open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts.<n>We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance.
arXiv Detail & Related papers (2024-09-23T17:59:05Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Multi-modal Latent Space Learning for Chain-of-Thought Reasoning in
Language Models [25.058162782167503]
Chain-of-thought (CoT) reasoning has exhibited impressive performance in language models for solving complex tasks and answering questions.
We introduce a novel approach for multi-modal CoT reasoning that utilizes latent space learning via diffusion processes to generate effective image features that align with language thoughts.
Our method fuses image features and text representations at a deep level and improves the complex reasoning ability of multi-modal CoT.
arXiv Detail & Related papers (2023-12-14T09:13:09Z) - Multimodal Chain-of-Thought Reasoning in Language Models [94.70184390935661]
We propose Multimodal-CoT that incorporates language (text) and vision (images) modalities into a two-stage framework.
Experimental results on ScienceQA and A-OKVQA benchmark datasets show the effectiveness of our proposed approach.
arXiv Detail & Related papers (2023-02-02T07:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.