Why Knowledge Distillation Works in Generative Models: A Minimal Working Explanation
- URL: http://arxiv.org/abs/2505.13111v1
- Date: Mon, 19 May 2025 13:39:47 GMT
- Title: Why Knowledge Distillation Works in Generative Models: A Minimal Working Explanation
- Authors: Sungmin Cha, Kyunghyun Cho,
- Abstract summary: Knowledge distillation (KD) is a core component in the training and deployment of modern generative models.<n>We show that KD induces a trade-off between precision and recall in the student model.<n>Our analysis provides a simple and general explanation for the effectiveness of KD in generative modeling.
- Score: 53.30082523545212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation (KD) is a core component in the training and deployment of modern generative models, particularly large language models (LLMs). While its empirical benefits are well documented--enabling smaller student models to emulate the performance of much larger teachers--the underlying mechanisms by which KD improves generative quality remain poorly understood. In this work, we present a minimal working explanation of KD in generative modeling. Using a controlled simulation with mixtures of Gaussians, we demonstrate that distillation induces a trade-off between precision and recall in the student model. As the teacher distribution becomes more selective, the student concentrates more probability mass on high-likelihood regions at the expense of coverage--a behavior modulated by a single entropy-controlling parameter. We then validate this effect in a large-scale language modeling setup using the SmolLM2 family of models. Empirical results reveal the same precision-recall dynamics observed in simulation, where precision corresponds to sample quality and recall to distributional coverage. This precision-recall trade-off proves especially beneficial in scenarios where sample quality outweighs diversity, such as instruction tuning or downstream generation. Our analysis provides a simple and general explanation for the effectiveness of KD in generative modeling.
Related papers
- Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
We introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data.<n>DSD pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs.
arXiv Detail & Related papers (2025-03-10T17:44:46Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - Diffusion Model Conditioning on Gaussian Mixture Model and Negative
Gaussian Mixture Gradient [1.9298401192674903]
Diffusion models (DMs) are a type of generative model that has a huge impact on image synthesis and beyond.
We propose a conditioning mechanism utilizing Gaussian mixture models (GMMs) as feature conditioning to guide the denoising process.
We show that conditional latent distribution based on features and classes is significantly different, so that conditional latent distribution on features produces fewer defect generations than conditioning on classes.
arXiv Detail & Related papers (2024-01-20T16:01:18Z) - Knowledge Distillation Performs Partial Variance Reduction [93.6365393721122]
Knowledge distillation is a popular approach for enhancing the performance of ''student'' models.
The underlying mechanics behind knowledge distillation (KD) are still not fully understood.
We show that KD can be interpreted as a novel type of variance reduction mechanism.
arXiv Detail & Related papers (2023-05-27T21:25:55Z) - Distilling Robustness into Natural Language Inference Models with Domain-Targeted Augmentation [12.512147282842175]
We investigate two complementary methods for improving the robustness of the resulting student models on out-of-distribution domains.
The first approach augments the distillation with generated unlabelled examples that match the target distribution.
The second method upsamples data points among the training set that are similar to the target distribution.
arXiv Detail & Related papers (2023-05-22T14:37:05Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
We propose MixKD, a data-agnostic distillation framework, to endow the resulting model with stronger generalization ability.
We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the error and the empirical error.
Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
arXiv Detail & Related papers (2020-11-01T18:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.