Network-wide Quantum Key Distribution with Onion Routing Relay (Conference Version)
- URL: http://arxiv.org/abs/2505.13158v1
- Date: Mon, 19 May 2025 14:18:19 GMT
- Title: Network-wide Quantum Key Distribution with Onion Routing Relay (Conference Version)
- Authors: Pedro Otero-García, David Pérez-Castro, Manuel Fernández-Veiga, Ana Fernández-Vilas,
- Abstract summary: Onion Relay (ORR) integrates onion routing with post-quantum cryptography (PQC) in a key-relay (KR) model.<n>ORR aims to avoid the security risks posed by intermediate malicious nodes and ensures end-to-end security.<n>Results show that while basic ORR incurs higher encryption overhead, it provides substantial security improvements without significantly impacting the overall key distribution time.
- Score: 2.1186715417451207
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advancement of quantum computing threatens classical cryptographic methods, necessitating the development of secure quantum key distribution (QKD) solutions for QKD Networks (QKDN). In this paper, a novel key distribution protocol, Onion Routing Relay (ORR), that integrates onion routing (OR) with post-quantum cryptography (PQC) in a key-relay (KR) model is evaluated for QKDNs. This approach increases the security by enhancing confidentiality, integrity, authenticity (CIA principles), and anonymity in quantum-secure communications. By employing PQC-based encapsulation, ORR aims to avoid the security risks posed by intermediate malicious nodes and ensures end-to-end security. Our results show a competitive performance of the basic ORR model, against current KR and trusted-node (TN) approaches, demonstrating its feasibility and applicability in high-security environments maintaining a consistent Quality of Service (QoS). The results also show that while basic ORR incurs higher encryption overhead, it provides substantial security improvements without significantly impacting the overall key distribution time. Nevertheless, the introduction of an end-to-end authentication extension (ORR-Ext) has a significant impact on the Quality of Service (QoS), thereby limiting its suitability to applications with stringent security requirements.
Related papers
- Network-wide Quantum Key Distribution with Onion Routing Relay [2.1186715417451207]
Onion Relay (ORR) integrates onion routing with post-quantum cryptography (PQC) in a key-relay (KR) model.<n>ORR provides substantial security improvements without significantly impacting the overall key distribution time.
arXiv Detail & Related papers (2025-05-19T15:21:11Z) - Privacy Enhanced QKD Networks: Zero Trust Relay Architecture based on Homomorphic Encryption [0.0]
Quantum key distribution (QKD) enables unconditionally secure symmetric key exchange between parties.<n>Traditional solutions rely on trusted relay nodes, which perform intermediate re-encryption of keys using one-time pad (OTP) encryption.<n>We propose a zero-trust relay design that applies fully homomorphic encryption (FHE) to perform intermediate OTP re-encryption.
arXiv Detail & Related papers (2025-03-21T10:20:06Z) - Onion Routing Key Distribution for QKDN [1.8637078358591843]
The advance of quantum computing poses a significant threat to classical cryptography.<n>Two main approaches have emerged: quantum cryptography and post-quantum cryptography.<n>We propose a secure key distribution protocol for Quantum Key Distribution Networks (QKDN)
arXiv Detail & Related papers (2025-02-10T16:47:42Z) - Application of $α$-order Information Metrics for Secure Communication in Quantum Physical Layer Design [45.41082277680607]
We study the $alpha$-order information-theoretic metrics based on R'enyi entropy.<n>We apply our framework to a practical scenario involving BPSK modulation over a lossy bosonic channel.
arXiv Detail & Related papers (2025-02-07T03:44:11Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Overcoming Noise Limitations in QKD with Quantum Privacy Amplification [0.0]
We show experimentally that QPA is able to increase the secure key rate achievable with QKD by improving the quality of distributed entanglement.
We show that QPA enables key generation at noise levels that previously prevented key generation.
Results are paramount for the implementation of a global quantum network linking quantum processors and ensuring future-proof data security.
arXiv Detail & Related papers (2024-02-08T14:07:36Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Distributed Information-theoretical Secure Protocols for Quantum Key
Distribution Networks against Malicious Nodes [15.200383830307915]
Quantum key distribution (QKD) networks are expected to enable information-theoretical secure (ITS) communication over a large-scale network.
Current research on QKD networks primarily addresses passive attacks conducted by malicious nodes such as eavesdropping.
We suggest a novel paradigm, inspired by distributed systems, to address the active attack by collaborate malicious nodes in QKD networks.
arXiv Detail & Related papers (2023-02-14T11:53:22Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
A client remotely prepares a quantum state using a classical channel.
Privacy loss incurred by employing $RSP_CC$ as a sub-module is unclear.
We show that a specific $RSP_CC$ protocol can replace the quantum channel at least in some contexts.
arXiv Detail & Related papers (2020-07-03T13:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.