Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
- URL: http://arxiv.org/abs/2505.13182v7
- Date: Sun, 22 Jun 2025 09:45:12 GMT
- Title: Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
- Authors: Jianfeng Xu,
- Abstract summary: This study focuses on addressing the current lack of a unified formal theoretical framework in machine learning.<n>universal definitions for model interpretability and ethical safety are proposed.<n>Three key theorems are proved: the equivalence of model interpretability and information recoverability, the assurance of ethical safety, and the estimation of generalization error.
- Score: 1.145820303039203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: [Objective] This study focuses on addressing the current lack of a unified formal theoretical framework in machine learning, as well as the deficiencies in interpretability and ethical safety assurance. [Methods] A formal information model is first constructed, utilizing sets of well-formed formulas to explicitly define the ontological states and carrier mappings of typical components in machine learning. Learnable and processable predicates, along with learning and processing functions, are introduced to analyze the logical deduction and constraint rules of the causal chains within models. [Results] A meta-framework for machine learning theory (MLT-MF) is established. Based on this framework, universal definitions for model interpretability and ethical safety are proposed. Furthermore, three key theorems are proved: the equivalence of model interpretability and information recoverability, the assurance of ethical safety, and the estimation of generalization error. [Limitations] The current framework assumes ideal conditions with noiseless information-enabling mappings and primarily targets model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing the critical challenges currently faced in machine learning.
Related papers
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the interaction between world knowledge and logical reasoning.<n>We find that state-of-the-art large language models (LLMs) often rely on superficial generalizations.<n>We show that simple reformulations of the task can elicit more robust reasoning behavior.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Causal Abstraction in Model Interpretability: A Compact Survey [5.963324728136442]
causal abstraction provides a principled approach to understanding and explaining the causal mechanisms underlying model behavior.
This survey paper delves into the realm of causal abstraction, examining its theoretical foundations, practical applications, and implications for the field of model interpretability.
arXiv Detail & Related papers (2024-10-26T12:24:28Z) - A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models [13.59675117792588]
Recent studies on logical reasoning in Language Models (LMs) have sparked a debate on whether LMs can learn systematic reasoning principles during pre-training.<n>This paper presents a mechanistic interpretation of syllogistic reasoning in LMs to advance the understanding of internal dynamics.
arXiv Detail & Related papers (2024-08-16T07:47:39Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
Tokenization is a critical step in the NLP pipeline.<n>Despite its recognized importance as a standard representation method in NLP, the theoretical underpinnings of tokenization are not yet fully understood.<n>The present paper contributes to addressing this theoretical gap by proposing a unified formal framework for representing and analyzing tokenizer models.
arXiv Detail & Related papers (2024-07-16T11:12:28Z) - Co-designing heterogeneous models: a distributed systems approach [0.40964539027092917]
This paper presents a modelling approach tailored for heterogeneous systems based on three elements.
An inferentialist interpretation of what a model is, a distributed systems metaphor and a co-design cycle describe the practical design and construction of the model.
We explore the suitability of this method in the context of three different security-oriented models.
arXiv Detail & Related papers (2024-07-10T13:35:38Z) - Semantic Objective Functions: A distribution-aware method for adding logical constraints in deep learning [4.854297874710511]
Constrained Learning and Knowledge Distillation techniques have shown promising results.
We propose a loss-based method that embeds knowledge-enforces logical constraints into a machine learning model.
We evaluate our method on a variety of learning tasks, including classification tasks with logic constraints.
arXiv Detail & Related papers (2024-05-03T19:21:47Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Causal Abstraction: A Theoretical Foundation for Mechanistic Interpretability [30.76910454663951]
Causal abstraction provides a theoretical foundation for mechanistic interpretability.<n>Our contributions are generalizing the theory of causal abstraction from mechanism replacement to arbitrary mechanism transformation.
arXiv Detail & Related papers (2023-01-11T20:42:41Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.