Occult: Optimizing Collaborative Communication across Experts for Accelerated Parallel MoE Training and Inference
- URL: http://arxiv.org/abs/2505.13345v1
- Date: Mon, 19 May 2025 16:50:27 GMT
- Title: Occult: Optimizing Collaborative Communication across Experts for Accelerated Parallel MoE Training and Inference
- Authors: Shuqing Luo, Pingzhi Li, Jie Peng, Hanrui Wang, Yang, Zhao, Yu, Cao, Yu Cheng, Tianlong Chen,
- Abstract summary: We propose system- and algorithm-level innovations to reduce communication costs.<n>We show that augmenting the proportion of intra-collaboration can accelerate expert parallelism at scale.<n>Our designs are capable of either delivering exact results with reduced communication cost or controllably minimizing the cost with collaboration pruning.
- Score: 77.07591324890537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-experts (MoE) architectures could achieve impressive computational efficiency with expert parallelism, which relies heavily on all-to-all communication across devices. Unfortunately, such communication overhead typically constitutes a significant portion of the total runtime, hampering the scalability of distributed training and inference for modern MoE models (consuming over $40\%$ runtime in large-scale training). In this paper, we first define collaborative communication to illustrate this intrinsic limitation, and then propose system- and algorithm-level innovations to reduce communication costs. Specifically, given a pair of experts co-activated by one token, we call them "collaborated", which comprises $2$ cases as intra- and inter-collaboration, depending on whether they are kept on the same device. Our pilot investigations reveal that augmenting the proportion of intra-collaboration can accelerate expert parallelism at scale. It motivates us to strategically optimize collaborative communication for accelerated MoE training and inference, dubbed Occult. Our designs are capable of either delivering exact results with reduced communication cost or controllably minimizing the cost with collaboration pruning, materialized by modified fine-tuning. Comprehensive experiments on various MoE-LLMs demonstrate that Occult can be faster than popular state-of-the-art inference or training frameworks (more than $1.5\times$ speed up across multiple tasks and models) with comparable or superior quality compared to the standard fine-tuning. Code is available at $\href{https://github.com/UNITES-Lab/Occult}{https://github.com/UNITES-Lab/Occult}$.
Related papers
- Comet: Fine-grained Computation-communication Overlapping for Mixture-of-Experts [8.80408909878008]
Mixture-of-experts (MoE) has been extensively employed to scale large language models to trillion-plus parameters.<n>Existing methods suggest the communication in a MoE layer to be pipelined with the computation for overlapping.<n>We present COMET, an optimized MoE system with fine-grained communication-computation overlapping.
arXiv Detail & Related papers (2025-02-27T06:36:45Z) - Parm: Efficient Training of Large Sparsely-Activated Models with Dedicated Schedules [15.680276212483292]
We propose Parm, a system that accelerates MP+EP+ESP training by designing two dedicated schedules for placing communication tasks.
Parm achieves 1.13$times$ to 5.77$times$ speedup on 1296 manually configured MoE layers and approximately 3$times$ improvement on two real-world MoE models.
arXiv Detail & Related papers (2024-06-30T05:55:11Z) - ACCO: Accumulate while you Communicate, Hiding Communications in Distributed LLM Training [16.560270624096706]
We propose a memory-efficient optimization algorithm tailored for distributed training of Large Language Models.
Our method relies on a novel technique to mitigate the one-step delay inherent in parallel execution of gradient computations and communications.
arXiv Detail & Related papers (2024-06-03T08:23:45Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Shortcut-connected Expert Parallelism for Accelerating Mixture-of-Experts [4.629608387540524]
We present a novel shortcut-connected MoE (ScMoE) architecture with an overlapping parallel strategy.
ScMoE allows for a substantial overlap of 70% to 100% with computation.
Building on the ScMoE architecture, we further implement an expert offloading strategy to facilitate memory-limited inference.
arXiv Detail & Related papers (2024-04-07T17:17:23Z) - Exploiting Inter-Layer Expert Affinity for Accelerating
Mixture-of-Experts Model Inference [3.217776693788795]
We propose a lightweight optimization technique called ExFlow to largely accelerate the inference of pre-trained MoE models.
By exploiting the inter-layer expert affinity, our solution can be directly applied to pre-trained MoE models without any fine-tuning or accuracy degradation.
Our solution beats the cutting-edge MoE implementations with experts from 8 to 64, with up to 2.2x improvement in inference throughput.
arXiv Detail & Related papers (2024-01-16T14:16:47Z) - Cooperative Multi-Agent Reinforcement Learning: Asynchronous
Communication and Linear Function Approximation [77.09836892653176]
We study multi-agent reinforcement learning in the setting of episodic Markov decision processes.
We propose a provably efficient algorithm based on value that enable asynchronous communication.
We show that a minimal $Omega(dM)$ communication complexity is required to improve the performance through collaboration.
arXiv Detail & Related papers (2023-05-10T20:29:29Z) - Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism [91.9372563527801]
Existing MoE models suffer from tremendous inner-node and inter-node communication overhead.
We propose a novel MoE architecture called Pipeline MoE (PPMoE) to tackle them.
PPMoE builds expert parallel incorporating with tensor parallel and replaces communication-intensive all-to-all dispatching and gathering.
arXiv Detail & Related papers (2023-04-22T14:09:14Z) - ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training [65.68511423300812]
We propose ProgFed, a progressive training framework for efficient and effective federated learning.
ProgFed inherently reduces computation and two-way communication costs while maintaining the strong performance of the final models.
Our results show that ProgFed converges at the same rate as standard training on full models.
arXiv Detail & Related papers (2021-10-11T14:45:00Z) - Distributed Deep Learning in Open Collaborations [49.240611132653456]
We propose a novel algorithmic framework designed specifically for collaborative training.
We demonstrate the effectiveness of our approach for SwAV and ALBERT pretraining in realistic conditions and achieve performance comparable to traditional setups at a fraction of the cost.
arXiv Detail & Related papers (2021-06-18T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.