Time-R1: Towards Comprehensive Temporal Reasoning in LLMs
- URL: http://arxiv.org/abs/2505.13508v2
- Date: Tue, 03 Jun 2025 05:30:14 GMT
- Title: Time-R1: Towards Comprehensive Temporal Reasoning in LLMs
- Authors: Zijia Liu, Peixuan Han, Haofei Yu, Haoru Li, Jiaxuan You,
- Abstract summary: We introduce textitTime-R1, a framework to endow a moderate-sized (3B- parameter) Large Language Models with comprehensive temporal abilities.<n>Time-R1 outperforms models over 200 times larger, including the state-of-the-art 671B DeepSeek-R1.<n>This work provides strong evidence that thoughtfully engineered, progressive RL fine-tuning allows smaller, efficient models to achieve superior temporal performance.
- Score: 12.147540725976462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate impressive capabilities but lack robust temporal intelligence, struggling to integrate reasoning about the past with predictions and plausible generations of the future. Meanwhile, existing methods typically target isolated temporal skills, such as question answering about past events or basic forecasting, and exhibit poor generalization, particularly when dealing with events beyond their knowledge cutoff or requiring creative foresight. To address these limitations, we introduce \textit{Time-R1}, the first framework to endow a moderate-sized (3B-parameter) LLM with comprehensive temporal abilities: understanding, prediction, and creative generation. Our approach features a novel three-stage development path; the first two constitute a \textit{reinforcement learning (RL) curriculum} driven by a meticulously designed dynamic rule-based reward system. This framework progressively builds (1) foundational temporal understanding and logical event-time mappings from historical data, (2) future event prediction skills for events beyond its knowledge cutoff, and finally (3) enables remarkable generalization to creative future scenario generation without any fine-tuning. Strikingly, experiments demonstrate that Time-R1 outperforms models over 200 times larger, including the state-of-the-art 671B DeepSeek-R1, on highly challenging future event prediction and creative scenario generation benchmarks. This work provides strong evidence that thoughtfully engineered, progressive RL fine-tuning allows smaller, efficient models to achieve superior temporal performance, offering a practical and scalable path towards truly time-aware AI. To foster further research, we also release \textit{Time-Bench}, a large-scale multi-task temporal reasoning dataset derived from 10 years of news data, and our series of \textit{Time-R1} checkpoints.
Related papers
- A Multi-Expert Structural-Semantic Hybrid Framework for Unveiling Historical Patterns in Temporal Knowledge Graphs [66.98208997876783]
Temporal knowledge graph reasoning aims to predict future events with knowledge of existing facts and plays a key role in various downstream tasks.<n>Previous methods focused on either graph structure learning or semantic reasoning, failing to integrate dual reasoning perspectives.<n>We propose a Multi-Expert Structural-Semantic Hybrid framework that employs three kinds of expert modules to integrate both structural and semantic information.
arXiv Detail & Related papers (2025-06-17T06:49:13Z) - Time Series Forecasting as Reasoning: A Slow-Thinking Approach with Reinforced LLMs [12.295608604703117]
Time-R1 is a two-stage reinforcement fine-tuning framework designed to enhance multi-step reasoning ability of LLMs for time series forecasting.<n>Specifically, the first stage conducts supervised fine-tuning for warmup adaptation, while the second stage employs reinforcement learning to improve the model's generalization ability.<n> Experiments demonstrate that Time-R1 significantly improves forecast performance across diverse datasets.
arXiv Detail & Related papers (2025-06-12T12:15:50Z) - TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAF is a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques.<n>TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base.
arXiv Detail & Related papers (2024-12-30T09:06:47Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
We propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF.<n>To reduce the distribution discrepancy, we develop the cross-modal match module.<n>CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-03-12T04:04:38Z) - Remember This Event That Year? Assessing Temporal Information and Reasoning in Large Language Models [1.472789264981363]
Large Language Models (LLMs) are increasingly ubiquitous, yet their ability to retain and reason about temporal information remains limited.
Our study experiments with 12 state-of-the-art models on a novel numerical-temporal dataset, textbfTempUN, spanning from 10,000 BCE to 2100 CE.
arXiv Detail & Related papers (2024-02-19T09:43:03Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Back to the Future: Towards Explainable Temporal Reasoning with Large
Language Models [33.8108950744839]
We introduce the first task of explainable temporal reasoning, to predict an event's occurrence at a future timestamp based on context.
We show that our method achieves the state-of-the-art performance of temporal prediction and explanation.
arXiv Detail & Related papers (2023-10-02T10:35:23Z) - Reason for Future, Act for Now: A Principled Framework for Autonomous
LLM Agents with Provable Sample Efficiency [53.8779374188643]
We propose a principled framework with provable regret guarantees to orchestrate reasoning and acting.
Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon.
At each step, the LLM agent takes the initial action of the planned trajectory ("act for now"), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state.
arXiv Detail & Related papers (2023-09-29T16:36:39Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
Time series forecasting has received wide interest from existing research due to its broad applications inherent challenging.
This paper proposes a forecasting model, MPR-Net. It first adaptively decomposes multi-scale historical series patterns using convolution operation, then constructs a pattern extension forecasting method based on the prior knowledge of pattern reproduction, and finally reconstructs future patterns into future series using deconvolution operation.
By leveraging the temporal dependencies present in the time series, MPR-Net not only achieves linear time complexity, but also makes the forecasting process interpretable.
arXiv Detail & Related papers (2023-07-13T13:16:01Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
We propose an effective temporally-conditional diffusion model coined Temporally-Composable diffuser (TCD)
TCD extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions.
Our method reaches or matches the best performance compared with prior SOTA baselines.
arXiv Detail & Related papers (2023-06-08T02:12:26Z) - VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
Time series models aim for accurate predictions of the future given the past, where the forecasts are used for important downstream tasks like business decision making.
In this paper, we introduce a novel autoregressive architecture, VQ-AR, which instead learns a emphdiscrete set of representations that are used to predict the future.
arXiv Detail & Related papers (2022-05-31T15:43:46Z) - Temporal Reasoning on Implicit Events from Distant Supervision [91.20159064951487]
We propose a novel temporal reasoning dataset that evaluates the degree to which systems understand implicit events.
We find that state-of-the-art models struggle when predicting temporal relationships between implicit and explicit events.
We propose a neuro-symbolic temporal reasoning model, SYMTIME, which exploits distant supervision signals from large-scale text and uses temporal rules to infer end times.
arXiv Detail & Related papers (2020-10-24T03:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.