Combining the Best of Both Worlds: A Method for Hybrid NMT and LLM Translation
- URL: http://arxiv.org/abs/2505.13554v1
- Date: Mon, 19 May 2025 06:50:52 GMT
- Title: Combining the Best of Both Worlds: A Method for Hybrid NMT and LLM Translation
- Authors: Zhanglin Wu, Daimeng Wei, Xiaoyu Chen, Hengchao Shang, Jiaxin Guo, Zongyao Li, Yuanchang Luo, Jinlong Yang, Zhiqiang Rao, Hao Yang,
- Abstract summary: Large language model (LLM) shows promising performances in a variety of downstream tasks, such as machine translation (MT)<n>However, using LLMs for translation suffers from high computational costs and significant latency.<n>We propose a novel and straightforward decider that leverages source sentence features.
- Score: 12.59407158733001
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language model (LLM) shows promising performances in a variety of downstream tasks, such as machine translation (MT). However, using LLMs for translation suffers from high computational costs and significant latency. Based on our evaluation, in most cases, translations using LLMs are comparable to that generated by neural machine translation (NMT) systems. Only in particular scenarios, LLM and NMT models show respective advantages. As a result, integrating NMT and LLM for translation and using LLM only when necessary seems to be a sound solution. A scheduling policy that optimizes translation result while ensuring fast speed and as little LLM usage as possible is thereby required. We compare several scheduling policies and propose a novel and straightforward decider that leverages source sentence features. We conduct extensive experiments on multilingual test sets and the result shows that we can achieve optimal translation performance with minimal LLM usage, demonstrating effectiveness of our decider.
Related papers
- TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - Simul-LLM: A Framework for Exploring High-Quality Simultaneous Translation with Large Language Models [4.873927154453253]
Large language models (LLMs) with billions of parameters and pretrained on massive amounts of data are now capable of near or better than state-of-the-art performance in a variety of downstream natural language processing tasks.
Simul-LLM is the first open-source fine-tuning and evaluation pipeline development framework for LLMs focused on SimulMT.
arXiv Detail & Related papers (2023-12-07T20:42:05Z) - Direct Preference Optimization for Neural Machine Translation with Minimum Bayes Risk Decoding [15.309135455863753]
We show how the recently developed Reinforcement Learning technique, Direct Preference Optimization (DPO), can fine-tune Multilingual Large Language Models without additional computation.
Our method uses only a small monolingual fine-tuning set and yields significantly improved performance on multiple NMT test sets compared to MLLMs without DPO.
arXiv Detail & Related papers (2023-11-14T18:43:51Z) - On-the-Fly Fusion of Large Language Models and Machine Translation [3.718665608549311]
We propose the on-the-fly ensembling of a machine translation model with an LLM prompted on the same task and input.
We find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and ensembling with an LLM can produce better translations than ensembling two stronger MT models.
arXiv Detail & Related papers (2023-11-14T16:49:33Z) - Improving Machine Translation with Large Language Models: A Preliminary Study with Cooperative Decoding [73.32763904267186]
Large Language Models (LLMs) present the potential for achieving superior translation quality.
We propose Cooperative Decoding (CoDec) which treats NMT systems as a pretranslation model and MT-oriented LLMs as a supplemental solution.
arXiv Detail & Related papers (2023-11-06T03:41:57Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.