OMGPT: A Sequence Modeling Framework for Data-driven Operational Decision Making
- URL: http://arxiv.org/abs/2505.13580v1
- Date: Mon, 19 May 2025 15:33:03 GMT
- Title: OMGPT: A Sequence Modeling Framework for Data-driven Operational Decision Making
- Authors: Hanzhao Wang, Guanting Chen, Kalyan Talluri, Xiaocheng Li,
- Abstract summary: We build a Generative Pre-trained Transformer (GPT) model to solve sequential decision making tasks.<n>We first propose a general sequence modeling framework to cover several operational decision making tasks.<n>We then train a transformer-based neural network model (OMGPT) as a natural and powerful architecture for sequential modeling.
- Score: 5.419799294989289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We build a Generative Pre-trained Transformer (GPT) model from scratch to solve sequential decision making tasks arising in contexts of operations research and management science which we call OMGPT. We first propose a general sequence modeling framework to cover several operational decision making tasks as special cases, such as dynamic pricing, inventory management, resource allocation, and queueing control. Under the framework, all these tasks can be viewed as a sequential prediction problem where the goal is to predict the optimal future action given all the historical information. Then we train a transformer-based neural network model (OMGPT) as a natural and powerful architecture for sequential modeling. This marks a paradigm shift compared to the existing methods for these OR/OM tasks in that (i) the OMGPT model can take advantage of the huge amount of pre-trained data; (ii) when tackling these problems, OMGPT does not assume any analytical model structure and enables a direct and rich mapping from the history to the future actions. Either of these two aspects, to the best of our knowledge, is not achieved by any existing method. We establish a Bayesian perspective to theoretically understand the working mechanism of the OMGPT on these tasks, which relates its performance with the pre-training task diversity and the divergence between the testing task and pre-training tasks. Numerically, we observe a surprising performance of the proposed model across all the above tasks.
Related papers
- Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study [11.452011929848844]
This study proposes a novel meta-surrogate framework to assist many-task optimization.<n>We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems.<n>Our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness.
arXiv Detail & Related papers (2025-03-11T11:13:11Z) - Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning [85.91908329457081]
Multi-task reinforcement learning employs a single policy to complete various tasks, aiming to develop an agent with generalizability across different scenarios.<n>Existing approaches typically use a routing network to generate specific routes for each task and reconstruct a set of modules into diverse models to complete multiple tasks simultaneously.<n>We propose a Model Evolution framework with Genetic Algorithm (MEGA), which enables the model to evolve during training according to the difficulty of the tasks.
arXiv Detail & Related papers (2025-02-19T09:22:34Z) - Masked Generative Priors Improve World Models Sequence Modelling Capabilities [19.700020499490137]
Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling.<n>GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark.<n>We apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research.
arXiv Detail & Related papers (2024-10-10T11:52:07Z) - Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels.
We introduce a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences.
We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task.
arXiv Detail & Related papers (2024-04-01T03:27:34Z) - PASTA: Pretrained Action-State Transformer Agents [10.654719072766495]
Self-supervised learning has brought about a revolutionary paradigm shift in various computing domains.
Recent approaches involve pre-training transformer models on vast amounts of unlabeled data.
In reinforcement learning, researchers have recently adapted these approaches, developing models pre-trained on expert trajectories.
arXiv Detail & Related papers (2023-07-20T15:09:06Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey [66.18478838828231]
Multi-modal pre-trained big models have drawn more and more attention in recent years.
This paper introduces the background of multi-modal pre-training by reviewing the conventional deep, pre-training works in natural language process, computer vision, and speech.
Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network, and knowledge enhanced pre-training.
arXiv Detail & Related papers (2023-02-20T15:34:03Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
We introduce SUPERB-SG, a new benchmark to evaluate pre-trained models across various speech tasks.
We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain.
We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.
arXiv Detail & Related papers (2022-03-14T04:26:40Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.