Half Search Space is All You Need
- URL: http://arxiv.org/abs/2505.13586v1
- Date: Mon, 19 May 2025 17:59:59 GMT
- Title: Half Search Space is All You Need
- Authors: Pavel Rumiantsev, Mark Coates,
- Abstract summary: We propose to prune the search space in an efficient automatic manner to reduce memory consumption and search time.<n>Specifically, we utilise Zero-Shot NAS to efficiently remove low-performing architectures from the search space.<n> Experimental results on the DARTS search space show that our approach reduces memory consumption by 81% compared to the baseline One-Shot setup.
- Score: 18.672184596814077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Architecture Search (NAS) is a powerful tool for automating architecture design. One-Shot NAS techniques, such as DARTS, have gained substantial popularity due to their combination of search efficiency with simplicity of implementation. By design, One-Shot methods have high GPU memory requirements during the search. To mitigate this issue, we propose to prune the search space in an efficient automatic manner to reduce memory consumption and search time while preserving the search accuracy. Specifically, we utilise Zero-Shot NAS to efficiently remove low-performing architectures from the search space before applying One-Shot NAS to the pruned search space. Experimental results on the DARTS search space show that our approach reduces memory consumption by 81% compared to the baseline One-Shot setup while achieving the same level of accuracy.
Related papers
- TopoNAS: Boosting Search Efficiency of Gradient-based NAS via Topological Simplification [11.08910129925713]
TopoNAS is a model-agnostic approach for gradient-based one-shot NAS.
It significantly reduces searching time and memory usage by topological simplification of searchable paths.
arXiv Detail & Related papers (2024-08-02T15:01:29Z) - Automated Dominative Subspace Mining for Efficient Neural Architecture Search [36.06889021273405]
We propose a novel Neural Architecture Search method via Dominative Subspace Mining (DSM-NAS)
DSM-NAS finds promising architectures in automatically mined subspaces.
Experimental results demonstrate that DSM-NAS not only reduces the search cost but also discovers better architectures than state-of-the-art methods in various benchmark search spaces.
arXiv Detail & Related papers (2022-10-31T09:54:28Z) - When NAS Meets Trees: An Efficient Algorithm for Neural Architecture
Search [117.89827740405694]
Key challenge in neural architecture search (NAS) is designing how to explore wisely in the huge search space.
We propose a new NAS method called TNAS (NAS with trees), which improves search efficiency by exploring only a small number of architectures.
TNAS finds the global optimal architecture on CIFAR-10 with test accuracy of 94.37% in four GPU hours in NAS-Bench-201.
arXiv Detail & Related papers (2022-04-11T07:34:21Z) - Memory-Efficient Hierarchical Neural Architecture Search for Image
Restoration [68.6505473346005]
We propose a memory-efficient hierarchical NAS HiNAS (HiNAS) for image denoising and image super-resolution tasks.
With a single GTX1080Ti GPU, it takes only about 1 hour for searching for denoising network on BSD 500 and 3.5 hours for searching for the super-resolution structure on DIV2K.
arXiv Detail & Related papers (2020-12-24T12:06:17Z) - AdvantageNAS: Efficient Neural Architecture Search with Credit
Assignment [23.988393741948485]
We propose a novel search strategy for one-shot and sparse propagation NAS, namely AdvantageNAS.
AdvantageNAS is a gradient-based approach that improves the search efficiency by introducing credit assignment in gradient estimation for architecture updates.
Experiments on the NAS-Bench-201 and PTB dataset show that AdvantageNAS discovers an architecture with higher performance under a limited time budget.
arXiv Detail & Related papers (2020-12-11T05:45:03Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z) - Breaking the Curse of Space Explosion: Towards Efficient NAS with
Curriculum Search [94.46818035655943]
We propose a curriculum search method that starts from a small search space and gradually incorporates the learned knowledge to guide the search in a large space.
With the proposed search strategy, our Curriculum Neural Architecture Search (CNAS) method significantly improves the search efficiency and finds better architectures than existing NAS methods.
arXiv Detail & Related papers (2020-07-07T02:29:06Z) - Angle-based Search Space Shrinking for Neural Architecture Search [78.49722661000442]
Angle-Based search space Shrinking (ABS) for Neural Architecture Search (NAS)
Our approach progressively simplifies the original search space by dropping unpromising candidates.
ABS can dramatically enhance existing NAS approaches by providing a promising shrunk search space.
arXiv Detail & Related papers (2020-04-28T11:26:46Z) - DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search [76.9225014200746]
Efficient search is a core issue in Neural Architecture Search (NAS)
We present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner.
It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint.
arXiv Detail & Related papers (2020-03-27T17:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.