FedCTTA: A Collaborative Approach to Continual Test-Time Adaptation in Federated Learning
- URL: http://arxiv.org/abs/2505.13643v1
- Date: Mon, 19 May 2025 18:29:51 GMT
- Title: FedCTTA: A Collaborative Approach to Continual Test-Time Adaptation in Federated Learning
- Authors: Rakibul Hasan Rajib, Md Akil Raihan Iftee, Mir Sazzat Hossain, A. K. M. Mahbubur Rahman, Sajib Mistry, M Ashraful Amin, Amin Ahsan Ali,
- Abstract summary: Federated Learning (FL) enables collaborative model training across distributed clients without sharing raw data.<n>FL models often suffer performance degradation due to distribution shifts between training and deployment.<n>We propose Federated Continual Test-Time Adaptation (FedCTTA), a privacy-preserving and computationally efficient framework for federated adaptation.
- Score: 0.956984177686999
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training across distributed clients without sharing raw data, making it ideal for privacy-sensitive applications. However, FL models often suffer performance degradation due to distribution shifts between training and deployment. Test-Time Adaptation (TTA) offers a promising solution by allowing models to adapt using only test samples. However, existing TTA methods in FL face challenges such as computational overhead, privacy risks from feature sharing, and scalability concerns due to memory constraints. To address these limitations, we propose Federated Continual Test-Time Adaptation (FedCTTA), a privacy-preserving and computationally efficient framework for federated adaptation. Unlike prior methods that rely on sharing local feature statistics, FedCTTA avoids direct feature exchange by leveraging similarity-aware aggregation based on model output distributions over randomly generated noise samples. This approach ensures adaptive knowledge sharing while preserving data privacy. Furthermore, FedCTTA minimizes the entropy at each client for continual adaptation, enhancing the model's confidence in evolving target distributions. Our method eliminates the need for server-side training during adaptation and maintains a constant memory footprint, making it scalable even as the number of clients or training rounds increases. Extensive experiments show that FedCTTA surpasses existing methods across diverse temporal and spatial heterogeneity scenarios.
Related papers
- Latte: Collaborative Test-Time Adaptation of Vision-Language Models in Federated Learning [66.35456997311742]
Test-time adaptation with pre-trained vision-language models has gained increasing attention for addressing distribution shifts during testing.<n>Existing test-time adaptation methods are typically designed for a single domain with abundant data.<n>We propose Latte, a novel framework where each client maintains a local memory to store embeddings from its own historical test data.
arXiv Detail & Related papers (2025-07-29T04:27:29Z) - Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations [67.35596444651037]
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable.<n>We propose a Reliable Test-time Adaptation (ReTA) method that enhances reliability from two perspectives.
arXiv Detail & Related papers (2025-07-13T05:37:33Z) - Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
Federated learning (FL) enables collaborative model training across distributed edge devices while preserving data privacy, and typically operates in a round-based synchronous manner.<n>We propose ADEL-FL, a novel framework that jointly optimize per-round deadlines and user-specific batch sizes for layer-wise aggregation.
arXiv Detail & Related papers (2025-05-29T19:59:18Z) - Optimal Transport-Guided Source-Free Adaptation for Face Anti-Spoofing [58.56017169759816]
We introduce a novel method in which the face anti-spoofing model can be adapted by the client itself to a target domain at test time.<n>Specifically, we develop a prototype-based base model and an optimal transport-guided adaptor.<n>In cross-domain and cross-attack settings, compared with recent methods, our method achieves average relative improvements of 19.17% in HTER and 8.58% in AUC.
arXiv Detail & Related papers (2025-03-29T06:10:34Z) - FedRTS: Federated Robust Pruning via Combinatorial Thompson Sampling [12.067872131025231]
Federated Learning (FL) enables collaborative model training across distributed clients without data sharing.<n>Current methods use dynamic pruning to improve efficiency by periodically adjusting sparse model topologies while maintaining sparsity.<n>We propose Federated Robust pruning via Thompson Sampling (FedRTS), a novel framework designed to develop robust sparse models.
arXiv Detail & Related papers (2025-01-31T13:26:22Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Asynchronous Federated Learning: A Scalable Approach for Decentralized Machine Learning [0.9208007322096533]
Federated Learning (FL) has emerged as a powerful paradigm for decentralized machine learning, enabling collaborative model training across diverse clients without sharing raw data.<n>Traditional FL approaches often face limitations in scalability and efficiency due to their reliance on synchronous client updates.<n>We propose an Asynchronous Federated Learning (AFL) algorithm, which allows clients to update the global model independently and asynchronously.
arXiv Detail & Related papers (2024-12-23T17:11:02Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - FedAA: A Reinforcement Learning Perspective on Adaptive Aggregation for Fair and Robust Federated Learning [5.622065847054885]
Federated Learning (FL) has emerged as a promising approach for privacy-preserving model training across decentralized devices.<n>We introduce a novel method called textbfFedAA, which optimize client contributions via textbfAdaptive textbfAggregation to enhance model robustness against malicious clients.
arXiv Detail & Related papers (2024-02-08T10:22:12Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.