Augmenting Online RL with Offline Data is All You Need: A Unified Hybrid RL Algorithm Design and Analysis
- URL: http://arxiv.org/abs/2505.13768v3
- Date: Fri, 27 Jun 2025 21:05:50 GMT
- Title: Augmenting Online RL with Offline Data is All You Need: A Unified Hybrid RL Algorithm Design and Analysis
- Authors: Ruiquan Huang, Donghao Li, Chengshuai Shi, Cong Shen, Jing Yang,
- Abstract summary: This paper investigates a hybrid learning framework for reinforcement learning (RL) in which the agent can leverage both an offline dataset and online interactions to learn the optimal policy.<n>We present a unified algorithm and analysis and show that augmenting confidence-based online RL algorithms with the offline dataset outperforms any pure online or offline algorithm alone.
- Score: 18.323002218335215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates a hybrid learning framework for reinforcement learning (RL) in which the agent can leverage both an offline dataset and online interactions to learn the optimal policy. We present a unified algorithm and analysis and show that augmenting confidence-based online RL algorithms with the offline dataset outperforms any pure online or offline algorithm alone and achieves state-of-the-art results under two learning metrics, i.e., sub-optimality gap and online learning regret. Specifically, we show that our algorithm achieves a sub-optimality gap $\tilde{O}(\sqrt{1/(N_0/\mathtt{C}(\pi^*|\rho)+N_1}) )$, where $\mathtt{C}(\pi^*|\rho)$ is a new concentrability coefficient, $N_0$ and $N_1$ are the numbers of offline and online samples, respectively. For regret minimization, we show that it achieves a constant $\tilde{O}( \sqrt{N_1/(N_0/\mathtt{C}(\pi^{-}|\rho)+N_1)} )$ speed-up compared to pure online learning, where $\mathtt{C}(\pi^-|\rho)$ is the concentrability coefficient over all sub-optimal policies. Our results also reveal an interesting separation on the desired coverage properties of the offline dataset for sub-optimality gap minimization and regret minimization. We further validate our theoretical findings in several experiments in special RL models such as linear contextual bandits and Markov decision processes (MDPs).
Related papers
- A Primal-Dual Algorithm for Offline Constrained Reinforcement Learning with Linear MDPs [18.449996575976993]
We propose a primal dual algorithm for offline RL with linear MDPs in the infinite-horizon discounted setting.
Our algorithm is the first computationally efficient algorithm in this setting that achieves sample complexity of $O(epsilon-2)$ with partial data coverage assumption.
We extend our algorithm to work in the offline constrained RL setting that enforces constraints on additional reward signals.
arXiv Detail & Related papers (2024-02-07T00:33:11Z) - Efficient Online Learning with Offline Datasets for Infinite Horizon
MDPs: A Bayesian Approach [25.77911741149966]
We show that if the learning agent models the behavioral policy used by the expert, it can do substantially better in terms of minimizing cumulative regret.
We then propose the Informed RLSVI algorithm to efficiently approximate the iPSRL algorithm.
arXiv Detail & Related papers (2023-10-17T19:01:08Z) - Provably Efficient Neural Offline Reinforcement Learning via Perturbed
Rewards [33.88533898709351]
VIPeR amalgamates the randomized value function idea with the pessimism principle.
It implicitly obtains pessimism by simply perturbing the offline data multiple times.
It is both provably and computationally efficient in general Markov decision processes (MDPs) with neural network function approximation.
arXiv Detail & Related papers (2023-02-24T17:52:12Z) - On Instance-Dependent Bounds for Offline Reinforcement Learning with
Linear Function Approximation [80.86358123230757]
We present an algorithm called Bootstrapped and Constrained Pessimistic Value Iteration (BCP-VI)
Under a partial data coverage assumption, BCP-VI yields a fast rate of $tildemathcalO(frac1K)$ for offline RL when there is a positive gap in the optimal Q-value functions.
These are the first $tildemathcalO(frac1K)$ bound and absolute zero sub-optimality bound respectively for offline RL with linear function approximation from adaptive data.
arXiv Detail & Related papers (2022-11-23T18:50:44Z) - Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes [99.26864533035454]
We study offline reinforcement learning (RL) in partially observable Markov decision processes.
We propose the underlineProxy variable underlinePessimistic underlinePolicy underlineOptimization (textttP3O) algorithm.
textttP3O is the first provably efficient offline RL algorithm for POMDPs with a confounded dataset.
arXiv Detail & Related papers (2022-05-26T19:13:55Z) - Settling the Sample Complexity of Model-Based Offline Reinforcement
Learning [50.5790774201146]
offline reinforcement learning (RL) learns using pre-collected data without further exploration.
Prior algorithms or analyses either suffer from suboptimal sample complexities or incur high burn-in cost to reach sample optimality.
We demonstrate that the model-based (or "plug-in") approach achieves minimax-optimal sample complexity without burn-in cost.
arXiv Detail & Related papers (2022-04-11T17:26:19Z) - Locally Differentially Private Reinforcement Learning for Linear Mixture
Markov Decision Processes [78.27542864367821]
Reinforcement learning (RL) algorithms can be used to provide personalized services, which rely on users' private and sensitive data.
To protect the users' privacy, privacy-preserving RL algorithms are in demand.
We propose a novel $(varepsilon, delta)$-LDP algorithm for learning a class of Markov decision processes (MDPs) dubbed linear mixture MDPs.
arXiv Detail & Related papers (2021-10-19T17:44:09Z) - Policy Finetuning: Bridging Sample-Efficient Offline and Online
Reinforcement Learning [59.02541753781001]
This paper initiates the theoretical study of policy finetuning, that is, online RL where the learner has additional access to a "reference policy"
We first design a sharp offline reduction algorithm that finds an $varepsilon$ near-optimal policy within $widetildeO(H3SCstar/varepsilon2)$ episodes.
We then establish an $Omega(H3SminCstar, A/varepsilon2)$ sample complexity lower bound for any policy finetuning algorithm, including those that can adaptively explore the
arXiv Detail & Related papers (2021-06-09T08:28:55Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov
Decision Processes [91.38793800392108]
We study reinforcement learning with linear function approximation where the underlying transition probability kernel of the Markov decision process (MDP) is a linear mixture model.
We propose a new, computationally efficient algorithm with linear function approximation named $textUCRL-VTR+$ for the aforementioned linear mixture MDPs.
To the best of our knowledge, these are the first computationally efficient, nearly minimax optimal algorithms for RL with linear function approximation.
arXiv Detail & Related papers (2020-12-15T18:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.