A Challenge to Build Neuro-Symbolic Video Agents
- URL: http://arxiv.org/abs/2505.13851v1
- Date: Tue, 20 May 2025 02:53:21 GMT
- Title: A Challenge to Build Neuro-Symbolic Video Agents
- Authors: Sahil Shah, Harsh Goel, Sai Shankar Narasimhan, Minkyu Choi, S P Sharan, Oguzhan Akcin, Sandeep Chinchali,
- Abstract summary: We show how a neuro-symbolic perspective can enhance interpretability, enable structured reasoning, and provide stronger guarantees on system behavior.<n>We present a grand challenge to the research community: developing the next generation of intelligent video agents.<n>By addressing these pillars, we can transition from passive perception to intelligent video agents that reason, predict, and act.
- Score: 5.243155799248514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern video understanding systems excel at tasks such as scene classification, object detection, and short video retrieval. However, as video analysis becomes increasingly central to real-world applications, there is a growing need for proactive video agents for the systems that not only interpret video streams but also reason about events and take informed actions. A key obstacle in this direction is temporal reasoning: while deep learning models have made remarkable progress in recognizing patterns within individual frames or short clips, they struggle to understand the sequencing and dependencies of events over time, which is critical for action-driven decision-making. Addressing this limitation demands moving beyond conventional deep learning approaches. We posit that tackling this challenge requires a neuro-symbolic perspective, where video queries are decomposed into atomic events, structured into coherent sequences, and validated against temporal constraints. Such an approach can enhance interpretability, enable structured reasoning, and provide stronger guarantees on system behavior, all key properties for advancing trustworthy video agents. To this end, we present a grand challenge to the research community: developing the next generation of intelligent video agents that integrate three core capabilities: (1) autonomous video search and analysis, (2) seamless real-world interaction, and (3) advanced content generation. By addressing these pillars, we can transition from passive perception to intelligent video agents that reason, predict, and act, pushing the boundaries of video understanding.
Related papers
- VideoForest: Person-Anchored Hierarchical Reasoning for Cross-Video Question Answering [14.039561301034848]
Cross-video question answering presents significant challenges beyond traditional single-video understanding.<n>We introduce VideoForest, a novel framework that addresses these challenges through person-anchored hierarchical reasoning.<n>Our approach leverages person-level features as natural bridge points between videos, enabling effective cross-video understanding without requiring end-to-end training.
arXiv Detail & Related papers (2025-08-05T03:33:24Z) - Infinite Video Understanding [50.78256932424239]
We argue that framing Infinite Video Understanding as a blue-sky research objective provides a vital north star for the multimedia.<n>We outline the core challenges and key research directions towards achieving this transformative capability.
arXiv Detail & Related papers (2025-07-11T23:07:04Z) - DAVID-XR1: Detecting AI-Generated Videos with Explainable Reasoning [58.70446237944036]
DAVID-X is the first dataset to pair AI-generated videos with detailed defect-level, temporal-spatial annotations and written rationales.<n>We present DAVID-XR1, a video-language model designed to deliver an interpretable chain of visual reasoning.<n>Our results highlight the promise of explainable detection methods for trustworthy identification of AI-generated video content.
arXiv Detail & Related papers (2025-06-13T13:39:53Z) - Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding [63.82450803014141]
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity.<n>We propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips.<n>Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset.
arXiv Detail & Related papers (2025-05-23T16:37:36Z) - VideoMind: A Chain-of-LoRA Agent for Long Video Reasoning [33.37714717781103]
VideoMind is a novel video-language agent designed for temporal-grounded video understanding.<n>We identify essential capabilities for video temporal reasoning and develop a role-based agentic workflow.<n>We propose a novel Chain-of-LoRA strategy, enabling seamless role-switching via lightweight LoRA adaptors.
arXiv Detail & Related papers (2025-03-17T17:59:33Z) - Generative Ghost: Investigating Ranking Bias Hidden in AI-Generated Videos [106.5804660736763]
Video information retrieval remains a fundamental approach for accessing video content.<n>We build on the observation that retrieval models often favor AI-generated content in ad-hoc and image retrieval tasks.<n>We investigate whether similar biases emerge in the context of challenging video retrieval.
arXiv Detail & Related papers (2025-02-11T07:43:47Z) - Understanding Long Videos via LLM-Powered Entity Relation Graphs [51.13422967711056]
GraphVideoAgent is a framework that maps and monitors the evolving relationships between visual entities throughout the video sequence.<n>Our approach demonstrates remarkable effectiveness when tested against industry benchmarks.
arXiv Detail & Related papers (2025-01-27T10:57:24Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
We introduce SALOVA: Segment-Augmented Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content.<n>We present a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich context.<n>Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries.
arXiv Detail & Related papers (2024-11-25T08:04:47Z) - No More Shortcuts: Realizing the Potential of Temporal Self-Supervision [69.59938105887538]
We propose a more challenging reformulation of temporal self-supervision as frame-level (rather than clip-level) recognition tasks.
We demonstrate experimentally that our more challenging frame-level task formulations and the removal of shortcuts drastically improve the quality of features learned through temporal self-supervision.
arXiv Detail & Related papers (2023-12-20T13:20:31Z) - Tragedy Plus Time: Capturing Unintended Human Activities from
Weakly-labeled Videos [31.1632730473261]
W-Oops consists of 2,100 unintentional human action videos, with 44 goal-directed and 30 unintentional video-level activity labels collected through human annotations.
We propose a weakly supervised algorithm for localizing the goal-directed as well as unintentional temporal regions in the video.
arXiv Detail & Related papers (2022-04-28T14:56:43Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream.
The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations.
Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream.
arXiv Detail & Related papers (2022-04-26T09:52:31Z) - Object-Centric Representation Learning for Video Question Answering [27.979053252431306]
Video answering (Video QA) presents a powerful testbed for human-like intelligent behaviors.
The task demands new capabilities to integrate processing, language understanding, binding abstract concepts to concrete visual artifacts.
We propose a new query-guided representation framework to turn a video into a relational graph of objects.
arXiv Detail & Related papers (2021-04-12T02:37:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.