Towards Rehearsal-Free Continual Relation Extraction: Capturing Within-Task Variance with Adaptive Prompting
- URL: http://arxiv.org/abs/2505.13944v1
- Date: Tue, 20 May 2025 05:22:17 GMT
- Title: Towards Rehearsal-Free Continual Relation Extraction: Capturing Within-Task Variance with Adaptive Prompting
- Authors: Bao-Ngoc Dao, Quang Nguyen, Luyen Ngo Dinh, Minh Le, Nam Le, Linh Ngo Van,
- Abstract summary: WAVE++ is a novel approach inspired by the connection between prefix-tuning and mixture of experts.<n>We introduce task-specific prompt pools that enhance flexibility and adaptability across diverse tasks.<n>We incorporate label descriptions that provide richer, more global context, enabling the model to better distinguish among different relations.
- Score: 2.818102173042532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memory-based approaches have shown strong performance in Continual Relation Extraction (CRE). However, storing examples from previous tasks increases memory usage and raises privacy concerns. Recently, prompt-based methods have emerged as a promising alternative, as they do not rely on storing past samples. Despite this progress, current prompt-based techniques face several core challenges in CRE, particularly in accurately identifying task identities and mitigating catastrophic forgetting. Existing prompt selection strategies often suffer from inaccuracies, lack robust mechanisms to prevent forgetting in shared parameters, and struggle to handle both cross-task and within-task variations. In this paper, we propose WAVE++, a novel approach inspired by the connection between prefix-tuning and mixture of experts. Specifically, we introduce task-specific prompt pools that enhance flexibility and adaptability across diverse tasks while avoiding boundary-spanning risks; this design more effectively captures variations within each task and across tasks. To further refine relation classification, we incorporate label descriptions that provide richer, more global context, enabling the model to better distinguish among different relations. We also propose a training-free mechanism to improve task prediction during inference. Moreover, we integrate a generative model to consolidate prior knowledge within the shared parameters, thereby removing the need for explicit data storage. Extensive experiments demonstrate that WAVE++ outperforms state-of-the-art prompt-based and rehearsal-based methods, offering a more robust solution for continual relation extraction. Our code is publicly available at https://github.com/PiDinosauR2804/WAVE-CRE-PLUS-PLUS.
Related papers
- LLaVA-CMoE: Towards Continual Mixture of Experts for Large Vision-Language Models [21.888139819188105]
LLaVA-CMoE is a continual learning framework for large language models.<n> Probe-Guided Knowledge Extension mechanism determines when and where new experts should be added.<n>Probabilistic Task Locator assigns each task a dedicated, lightweight router.
arXiv Detail & Related papers (2025-03-27T07:36:11Z) - Adaptive Prompting for Continual Relation Extraction: A Within-Task Variance Perspective [23.79259400522239]
We propose a novel approach to address catastrophic forgetting in Continual Relation Extraction.<n>Our approach employs a prompt pool for each task, capturing variations within each task while enhancing cross-task variances.
arXiv Detail & Related papers (2024-12-11T11:00:33Z) - PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
Incremental Learning (IL) aims to learn deep models on sequential tasks continually.
Recent vast pre-trained models (PTMs) have achieved outstanding performance by prompt technique in practical IL without the old samples.
arXiv Detail & Related papers (2024-07-04T10:37:58Z) - Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting [49.87694319431288]
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources.
We propose a Comprehensive Generative (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs.
Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting.
arXiv Detail & Related papers (2024-06-28T10:05:58Z) - Fusion Makes Perfection: An Efficient Multi-Grained Matching Approach for Zero-Shot Relation Extraction [9.657656957845987]
We propose an efficient multi-grained matching approach that uses virtual entity matching to reduce manual annotation cost.
Experimental results show that our approach outperforms the previous State Of The Art (SOTA) methods.
arXiv Detail & Related papers (2024-06-17T11:31:48Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - MetaKernel: Learning Variational Random Features with Limited Labels [120.90737681252594]
Few-shot learning deals with the fundamental and challenging problem of learning from a few annotated samples, while being able to generalize well on new tasks.
We propose meta-learning kernels with random Fourier features for few-shot learning, we call Meta Kernel.
arXiv Detail & Related papers (2021-05-08T21:24:09Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.