DecIF: Improving Instruction-Following through Meta-Decomposition
- URL: http://arxiv.org/abs/2505.13990v2
- Date: Wed, 11 Jun 2025 03:50:54 GMT
- Title: DecIF: Improving Instruction-Following through Meta-Decomposition
- Authors: Tingfeng Hui, Pengyu Zhu, Bowen Ping, Ling Tang, Guanting Dong, Yaqi Zhang, Sen Su,
- Abstract summary: DecIF is a fully autonomous, meta-decomposition guided framework that generates diverse and high-quality instruction-following data.<n>For instruction generation, we guide LLMs to iteratively produce various types of meta-information, which are then combined with response constraints to form semantically rich instructions.<n>For response generation, we decompose each instruction into atomic-level evaluation criteria, enabling rigorous validation and the elimination of inaccurate instruction-response pairs.
- Score: 9.939860059820917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instruction-following has emerged as a crucial capability for large language models (LLMs). However, existing approaches often rely on pre-existing documents or external resources to synthesize instruction-following data, which limits their flexibility and generalizability. In this paper, we introduce DecIF, a fully autonomous, meta-decomposition guided framework that generates diverse and high-quality instruction-following data using only LLMs. DecIF is grounded in the principle of decomposition. For instruction generation, we guide LLMs to iteratively produce various types of meta-information, which are then combined with response constraints to form well-structured and semantically rich instructions. We further utilize LLMs to detect and resolve potential inconsistencies within the generated instructions. Regarding response generation, we decompose each instruction into atomic-level evaluation criteria, enabling rigorous validation and the elimination of inaccurate instruction-response pairs. Extensive experiments across a wide range of scenarios and settings demonstrate DecIF's superior performance on instruction-following tasks. Further analysis highlights its strong flexibility, scalability, and generalizability in automatically synthesizing high-quality instruction data.
Related papers
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - Towards Efficient and Effective Alignment of Large Language Models [7.853945494882636]
Large language models (LLMs) exhibit remarkable capabilities across diverse tasks, yet aligning them efficiently and effectively with human expectations remains a critical challenge.<n>This thesis advances LLM alignment by introducing novel methodologies in data collection, training, and evaluation.
arXiv Detail & Related papers (2025-06-11T02:08:52Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Ask, Fail, Repeat: Meeseeks, an Iterative Feedback Benchmark for LLMs' Multi-turn Instruction-following Ability [5.393872292662451]
textbfMeeseeks (named after Mr. Meeseeks from textitRick and MortyfootnoteRick and Morty) is an American adult animated science fiction sitcom created by Justin Roiland and Dan Harmon for Cartoon Network's nighttime programming block Adult Swim..<n>Meeseeks simulates realistic human-LLM interactions through an iterative feedback framework, which enables models to self-correct based on specific requirement failures in each turn.
arXiv Detail & Related papers (2025-04-30T13:28:19Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
We propose Aligning Instruction Tuning with Pre-training (AITP) to align instruction tuning with pre-training distributions.<n>We show consistent performance improvements with AITP on three fully open large language models (LLMs) across eight benchmarks.
arXiv Detail & Related papers (2025-01-16T08:27:40Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models [54.14602121129874]
We introduce AutoIF, the first scalable and reliable method for automatically generating instruction-following training data.
AutoIF transforms the validation of instruction-following data quality into code verification.
arXiv Detail & Related papers (2024-06-19T13:29:53Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
We introduce a technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants.
Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions.
Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
arXiv Detail & Related papers (2024-06-17T08:08:11Z) - Mosaic-IT: Cost-Free Compositional Data Synthesis for Instruction Tuning [30.82220015525281]
Mosaic Instruction Tuning (Mosaic-IT) is a human/model-free compositional data synthesis method.<n>Our evaluations demonstrate a superior performance and training efficiency of Mosaic-IT.
arXiv Detail & Related papers (2024-05-22T04:08:20Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
We introduce CodecLM, a framework for adaptively generating high-quality synthetic data for instruction-following abilities.
We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution.
We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples.
arXiv Detail & Related papers (2024-04-08T21:15:36Z) - Benchmarking Large Language Models on Controllable Generation under
Diversified Instructions [34.89012022437519]
Large language models (LLMs) have exhibited impressive instruction-following capabilities.
It is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions.
We propose a new benchmark CoDI-Eval to evaluate LLMs' responses to instructions with various constraints.
arXiv Detail & Related papers (2024-01-01T07:35:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.