Adaptive Inference-Time Scaling via Cyclic Diffusion Search
- URL: http://arxiv.org/abs/2505.14036v3
- Date: Sat, 05 Jul 2025 09:50:15 GMT
- Title: Adaptive Inference-Time Scaling via Cyclic Diffusion Search
- Authors: Gyubin Lee, Truong Nhat Nguyen Bao, Jaesik Yoon, Dongwoo Lee, Minsu Kim, Yoshua Bengio, Sungjin Ahn,
- Abstract summary: We introduce the challenge of adaptive inference-time scaling-dynamically adjusting computational effort during inference.<n>We propose Adaptive Bi-directional Cyclic Diffusion (ABCD), a flexible, search-based inference framework.<n>ABCD refines outputs through bi-directional diffusion cycles while adaptively controlling exploration depth and termination.
- Score: 68.58892778987936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have demonstrated strong generative capabilities across domains ranging from image synthesis to complex reasoning tasks. However, most inference-time scaling methods rely on fixed denoising schedules, limiting their ability to allocate computation based on instance difficulty or task-specific demands adaptively. We introduce the challenge of adaptive inference-time scaling-dynamically adjusting computational effort during inference-and propose Adaptive Bi-directional Cyclic Diffusion (ABCD), a flexible, search-based inference framework. ABCD refines outputs through bi-directional diffusion cycles while adaptively controlling exploration depth and termination. It comprises three components: Cyclic Diffusion Search, Automatic Exploration-Exploitation Balancing, and Adaptive Thinking Time. Experiments show that ABCD improves performance across diverse tasks while maintaining computational efficiency.
Related papers
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
A novel diffusion-based framework is introduced for solving inverse problems using a piecewise guidance scheme.<n>The proposed method is problem-agnostic and readily adaptable to a variety of inverse problems.<n>The framework achieves a reduction in inference time of (25%) for inpainting with both random and center masks, and (23%) and (24%) for (4times) and (8times) super-resolution tasks.
arXiv Detail & Related papers (2025-07-22T19:35:14Z) - Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization [23.328511708942045]
Heterogeneity-aware Distributional Framework (HDF) designed to enhance time-frequency modeling and mitigate imbalance caused by hard samples.<n>Time-Frequency Distributional Attention Module (DAM) captures both temporal consistency and frequency robustness.<n> adaptive optimization module Distribution-aware Scaling Module (DSM) introduced to dynamically balance classification and contrastive losses.
arXiv Detail & Related papers (2025-07-21T16:21:47Z) - Dynamic Search for Inference-Time Alignment in Diffusion Models [87.35944312589424]
We frame inference-time alignment in diffusion as a search problem and propose Dynamic Search for Diffusion (DSearch)<n>DSearch subsamples from denoising processes and approximates intermediate node rewards.<n>It also dynamically adjusts beam width and tree expansion to efficiently explore high-reward generations.
arXiv Detail & Related papers (2025-03-03T20:32:05Z) - FlexPrefill: A Context-Aware Sparse Attention Mechanism for Efficient Long-Sequence Inference [9.878232553789433]
Large language models (LLMs) encounter computational challenges during long-sequence inference.<n>Previous efforts have relied on fixed sparse attention patterns or identifying sparse attention patterns based on limited cases.<n>We introduce FlexPrefill, a Flexible sparse Pre-filling mechanism that dynamically adjusts sparse attention patterns and computational budget in real-time.
arXiv Detail & Related papers (2025-02-28T06:34:53Z) - AdaCo: Overcoming Visual Foundation Model Noise in 3D Semantic Segmentation via Adaptive Label Correction [14.51758173099208]
We propose a novel label-free learning method, Adaptive Label Correction (AdaCo), for 3D semantic segmentation.<n>AdaCo incorporates the Cross-modal Label Generation Module (CLGM), updating and adjusting the noisy samples within this supervision iteratively during training.<n>Our proposed AdaCo can effectively mitigate the performance limitations of label-free learning networks in 3D semantic segmentation tasks.
arXiv Detail & Related papers (2024-12-24T08:12:31Z) - Faster Diffusion Action Segmentation [9.868244939496678]
Temporal Action Classification (TAS) is an essential task in video analysis, aiming to segment and classify continuous frames into distinct action segments.
Recent advances in diffusion models have demonstrated substantial success in TAS tasks due to their stable training process and high-quality generation capabilities.
We propose EffiDiffAct, an efficient and high-performance TAS algorithm.
arXiv Detail & Related papers (2024-08-04T13:23:18Z) - HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition [17.412985505938508]
Internal Language Model (LM)-based methods use permutation language modeling (PLM) to solve the error correction caused by conditional independence in external LM-based methods.
This paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance the location-context-image interaction capability.
arXiv Detail & Related papers (2024-05-15T06:41:43Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online
Adaptation [87.85851771425325]
We consider a new problem of adapting a human mesh reconstruction model to out-of-domain streaming videos.
We tackle this problem through online adaptation, gradually correcting the model bias during testing.
We propose the Dynamic Bilevel Online Adaptation algorithm (DynaBOA)
arXiv Detail & Related papers (2021-11-07T07:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.