From Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora
- URL: http://arxiv.org/abs/2505.14045v1
- Date: Tue, 20 May 2025 07:43:45 GMT
- Title: From Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora
- Authors: Yingli Shen, Wen Lai, Shuo Wang, Kangyang Luo, Alexander Fraser, Maosong Sun,
- Abstract summary: We introduce a large-scale, high-quality multi-way parallel corpus, TED2025, based on TED Talks.<n>This dataset spans 113 languages, with up to 50 languages aligned in parallel, ensuring extensive multilingual coverage.<n>Experiments show that models trained on multiway parallel data consistently outperform those trained on unaligned multilingual data.
- Score: 85.44082712798553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continued pretraining and instruction tuning on large-scale multilingual data have proven to be effective in scaling large language models (LLMs) to low-resource languages. However, the unaligned nature of such data limits its ability to effectively capture cross-lingual semantics. In contrast, multi-way parallel data, where identical content is aligned across multiple languages, provides stronger cross-lingual consistency and offers greater potential for improving multilingual performance. In this paper, we introduce a large-scale, high-quality multi-way parallel corpus, TED2025, based on TED Talks. The corpus spans 113 languages, with up to 50 languages aligned in parallel, ensuring extensive multilingual coverage. Using this dataset, we investigate best practices for leveraging multi-way parallel data to enhance LLMs, including strategies for continued pretraining, instruction tuning, and the analysis of key influencing factors. Experiments on six multilingual benchmarks show that models trained on multiway parallel data consistently outperform those trained on unaligned multilingual data.
Related papers
- Just Go Parallel: Improving the Multilingual Capabilities of Large Language Models [59.21082876068122]
Large language models (LLMs) have demonstrated impressive translation capabilities even without being explicitly trained on parallel data.<n>Recent work suggests that it is actually caused by incidental bilingual signals present in the training data.<n>Various methods have been proposed to maximize the utility of parallel data to enhance the multilingual capabilities of multilingual encoder-based and encoder-decoder language models.
arXiv Detail & Related papers (2025-06-16T02:21:15Z) - Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models [52.22235443948351]
High-quality multilingual training data is essential for effectively pretraining large language models (LLMs)<n>Here, we introduce JQL, a systematic approach that efficiently curates diverse and high-quality multilingual data at scale.<n>JQL distills LLMs' annotation capabilities into lightweight annotators based on pretrained multilingual embeddings.
arXiv Detail & Related papers (2025-05-28T11:06:54Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.<n>P-MMEval delivers consistent language coverage across various datasets and provides parallel samples.<n>We conduct extensive experiments on representative multilingual model series to compare performances across models and tasks.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
We investigate whether machine translating English multimodal data can be an effective proxy for the lack of readily available multilingual data.
We propose two metrics for automatically removing such translations from the resulting datasets.
In experiments on five tasks across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning.
arXiv Detail & Related papers (2022-10-24T11:41:20Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
translate-train paradigm of transferring English datasets across multiple languages remains to be the key ingredient for training task-specific multilingual models.
We consider the task of multilingual semantic parsing and demonstrate the effectiveness and flexibility offered by large language models (LLMs) for translating English datasets into several languages via few-shot prompting.
arXiv Detail & Related papers (2022-10-13T19:34:14Z) - Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking [84.50302759362698]
We enhance the transfer learning process by intermediate fine-tuning of pretrained multilingual models.
We use parallel and conversational movie subtitles datasets to design cross-lingual intermediate tasks.
We achieve impressive improvements (> 20% on goal accuracy) on the parallel MultiWoZ dataset and Multilingual WoZ dataset.
arXiv Detail & Related papers (2021-09-28T11:22:38Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
arXiv Detail & Related papers (2020-06-11T13:15:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.