Process vs. Outcome Reward: Which is Better for Agentic RAG Reinforcement Learning
- URL: http://arxiv.org/abs/2505.14069v2
- Date: Thu, 22 May 2025 02:39:20 GMT
- Title: Process vs. Outcome Reward: Which is Better for Agentic RAG Reinforcement Learning
- Authors: Wenlin Zhang, Xiangyang Li, Kuicai Dong, Yichao Wang, Pengyue Jia, Xiaopeng Li, Yingyi Zhang, Derong Xu, Zhaocheng Du, Huifeng Guo, Ruiming Tang, Xiangyu Zhao,
- Abstract summary: Retrieval-augmented generation (RAG) enhances the text generation capabilities of large language models (LLMs)<n>We introduce a novel method ReasonRAG that automatically constructs RAG-ProGuide, a high-quality dataset providing process-level rewards for query generation, evidence extraction, and answer generation.<n>With the process-level policy optimization, the proposed framework empowers LLMs to autonomously invoke search, generate queries, extract relevant evidence, and produce final answers.
- Score: 45.10424242207931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) enhances the text generation capabilities of large language models (LLMs) by integrating external knowledge and up-to-date information. However, traditional RAG systems are limited by static workflows and lack the adaptability required for multistep reasoning and complex task management. To address these limitations, agentic RAG systems (e.g., DeepResearch) have been proposed, enabling dynamic retrieval strategies, iterative context refinement, and adaptive workflows for handling complex search queries beyond the capabilities of conventional RAG. Recent advances, such as Search-R1, have demonstrated promising gains using outcome-based reinforcement learning, where the correctness of the final answer serves as the reward signal. Nevertheless, such outcome-supervised agentic RAG methods face challenges including low exploration efficiency, gradient conflict, and sparse reward signals. To overcome these challenges, we propose to utilize fine-grained, process-level rewards to improve training stability, reduce computational costs, and enhance efficiency. Specifically, we introduce a novel method ReasonRAG that automatically constructs RAG-ProGuide, a high-quality dataset providing process-level rewards for (i) query generation, (ii) evidence extraction, and (iii) answer generation, thereby enhancing model inherent capabilities via process-supervised reinforcement learning. With the process-level policy optimization, the proposed framework empowers LLMs to autonomously invoke search, generate queries, extract relevant evidence, and produce final answers. Compared to existing approaches such as Search-R1 and traditional RAG systems, ReasonRAG, leveraging RAG-ProGuide, achieves superior performance on five benchmark datasets using only 5k training instances, significantly fewer than the 90k training instances required by Search-R1.
Related papers
- Generalized Reinforcement Learning for Retriever-Specific Query Rewriter with Unstructured Real-World Documents [4.200973008100858]
textbfRL-QR is a reinforcement learning framework for retriever-specific query rewriting.<n> RL-QR trains query rewriters tailored to specific retrievers, enhancing retrieval performance across varied domains.<n>Our findings highlight RL-QR's potential to revolutionize query optimization for RAG systems.
arXiv Detail & Related papers (2025-07-31T04:55:21Z) - Reinforced Informativeness Optimization for Long-Form Retrieval-Augmented Generation [77.10390725623125]
Long-form question answering (LFQA) presents unique challenges for large language models.<n>RioRAG is a novel reinforcement learning framework that advances long-form RAG through reinforced informativeness optimization.
arXiv Detail & Related papers (2025-05-27T07:34:41Z) - Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability [16.87554947089102]
We propose ARENA, a transparent RAG generator framework trained via reinforcement learning (RL) with our proposed rewards.<n>Based on the structured generation and adaptive reward calculation, our RL-based training enables the model to identify key evidence, perform structured reasoning, and generate answers with interpretable decision traces.
arXiv Detail & Related papers (2025-05-19T15:40:29Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.<n>Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.<n>We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.<n>SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.<n>We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - RAG-Gym: Optimizing Reasoning and Search Agents with Process Supervision [43.50113345998687]
We introduce RAG-Gym, a unified optimization framework that enhances information-seeking agents through fine-grained process supervision at each search step.<n>We also propose ReSearch, a novel agent architecture that synergizes answer reasoning and search query generation within the RAG-Gym framework.
arXiv Detail & Related papers (2025-02-19T18:56:03Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Understanding the Design Decisions of Retrieval-Augmented Generation Systems [7.10184268156888]
Retrieval-Augmented Generation (RAG) has emerged as a critical technique for enhancing large language model (LLM) capabilities.<n>We present the first comprehensive study of three universal RAG deployment decisions.
arXiv Detail & Related papers (2024-11-29T04:25:31Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
Retrieval-Augmented Generation (RAG) has emerged as a paradigm to address such challenges.
RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores.
In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios.
arXiv Detail & Related papers (2024-02-29T18:59:01Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
We propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance.
arXiv Detail & Related papers (2023-07-18T04:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.