MAS-KCL: Knowledge component graph structure learning with large language model-based agentic workflow
- URL: http://arxiv.org/abs/2505.14126v1
- Date: Tue, 20 May 2025 09:32:47 GMT
- Title: MAS-KCL: Knowledge component graph structure learning with large language model-based agentic workflow
- Authors: Yuan-Hao Jiang, Kezong Tang, Zi-Wei Chen, Yuang Wei, Tian-Yi Liu, Jiayi Wu,
- Abstract summary: An accurate KC graph can assist educators in identifying the root causes of learners' poor performance on specific KCs.<n>We have developed a KC graph structure learning algorithm, named MAS-KCL, which employs a multi-agent system driven by large language models.
- Score: 12.083628171166733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge components (KCs) are the fundamental units of knowledge in the field of education. A KC graph illustrates the relationships and dependencies between KCs. An accurate KC graph can assist educators in identifying the root causes of learners' poor performance on specific KCs, thereby enabling targeted instructional interventions. To achieve this, we have developed a KC graph structure learning algorithm, named MAS-KCL, which employs a multi-agent system driven by large language models for adaptive modification and optimization of the KC graph. Additionally, a bidirectional feedback mechanism is integrated into the algorithm, where AI agents leverage this mechanism to assess the value of edges within the KC graph and adjust the distribution of generation probabilities for different edges, thereby accelerating the efficiency of structure learning. We applied the proposed algorithm to 5 synthetic datasets and 4 real-world educational datasets, and experimental results validate its effectiveness in learning path recognition. By accurately identifying learners' learning paths, teachers are able to design more comprehensive learning plans, enabling learners to achieve their educational goals more effectively, thus promoting the sustainable development of education.
Related papers
- GraphRAG-Induced Dual Knowledge Structure Graphs for Personalized Learning Path Recommendation [56.37740554448673]
We introduce a knowledge concept structure graph generation module EDU-GraphRAG.<n>We then propose a Discrimination Learning-driven Reinforcement Learning (DLRL) module, which mitigates the issue of blocked learning paths.<n>We conduct extensive experiments on three benchmark datasets, demonstrating that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-06-27T15:15:42Z) - Top-Down vs. Bottom-Up Approaches for Automatic Educational Knowledge Graph Construction in CourseMapper [0.5937476291232802]
This study compares Top-down and Bottom-up approaches for automatic EduKG construction.<n>Results indicate that the Bottom-up approach outperforms the Top-down approach in accurately identifying and mapping key knowledge concepts.
arXiv Detail & Related papers (2025-05-15T08:11:48Z) - Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks [61.608453110751206]
We propose a fast and high-quality data-free knowledge distillation approach for graph neural networks.<n>The proposed graph-free KD method (ACGKD) significantly reduces the spatial complexity of pseudo-graphs.<n>ACGKD eliminates the dimensional ambiguity between the student and teacher models by increasing the student's dimensions.
arXiv Detail & Related papers (2025-04-01T08:44:27Z) - Path Pooling: Training-Free Structure Enhancement for Efficient Knowledge Graph Retrieval-Augmented Generation [19.239478003379478]
Large Language Models suffer from hallucinations and knowledge deficiencies in real-world applications.<n>We propose path pooling, a training-free strategy that introduces structure information through a novel path-centric pooling operation.<n>It seamlessly integrates into existing KG-RAG methods in a plug-and-play manner, enabling richer structure information utilization.
arXiv Detail & Related papers (2025-03-07T07:48:30Z) - Automated Knowledge Concept Annotation and Question Representation Learning for Knowledge Tracing [59.480951050911436]
We present KCQRL, a framework for automated knowledge concept annotation and question representation learning.<n>We demonstrate the effectiveness of KCQRL across 15 KT algorithms on two large real-world Math learning datasets.
arXiv Detail & Related papers (2024-10-02T16:37:19Z) - Exploring Graph-based Knowledge: Multi-Level Feature Distillation via Channels Relational Graph [8.646512035461994]
In visual tasks, large teacher models capture essential features and deep information, enhancing performance.
We propose a distillation framework based on graph knowledge, including a multi-level feature alignment strategy.
We emphasize spectral embedding (SE) as a key technique in our distillation process, which merges the student's feature space with the relational knowledge and structural complexities similar to the teacher network.
arXiv Detail & Related papers (2024-05-14T12:37:05Z) - Predictive, scalable and interpretable knowledge tracing on structured domains [6.860460230412773]
PSI-KT is a hierarchical generative approach that explicitly models how both individual cognitive traits and the prerequisite structure of knowledge influence learning dynamics.
PSI-KT targets the real-world need for efficient personalization even with a growing body of learners and learning histories.
arXiv Detail & Related papers (2024-03-19T22:19:29Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.