Unify Graph Learning with Text: Unleashing LLM Potentials for Session Search
- URL: http://arxiv.org/abs/2505.14156v1
- Date: Tue, 20 May 2025 10:05:06 GMT
- Title: Unify Graph Learning with Text: Unleashing LLM Potentials for Session Search
- Authors: Songhao Wu, Quan Tu, Hong Liu, Jia Xu, Zhongyi Liu, Guannan Zhang, Ran Wang, Xiuying Chen, Rui Yan,
- Abstract summary: Session search involves a series of interactive queries and actions to fulfill user's complex information need.<n>Current strategies typically prioritize sequential modeling for deep semantic understanding, overlooking the graph structure in interactions.<n>We propose Symbolic Graph Ranker (SGR), which aims to take advantage of both text-based and graph-based approaches.
- Score: 35.20525123189316
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Session search involves a series of interactive queries and actions to fulfill user's complex information need. Current strategies typically prioritize sequential modeling for deep semantic understanding, overlooking the graph structure in interactions. While some approaches focus on capturing structural information, they use a generalized representation for documents, neglecting the word-level semantic modeling. In this paper, we propose Symbolic Graph Ranker (SGR), which aims to take advantage of both text-based and graph-based approaches by leveraging the power of recent Large Language Models (LLMs). Concretely, we first introduce a set of symbolic grammar rules to convert session graph into text. This allows integrating session history, interaction process, and task instruction seamlessly as inputs for the LLM. Moreover, given the natural discrepancy between LLMs pre-trained on textual corpora, and the symbolic language we produce using our graph-to-text grammar, our objective is to enhance LLMs' ability to capture graph structures within a textual format. To achieve this, we introduce a set of self-supervised symbolic learning tasks including link prediction, node content generation, and generative contrastive learning, to enable LLMs to capture the topological information from coarse-grained to fine-grained. Experiment results and comprehensive analysis on two benchmark datasets, AOL and Tiangong-ST, confirm the superiority of our approach. Our paradigm also offers a novel and effective methodology that bridges the gap between traditional search strategies and modern LLMs.
Related papers
- Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.<n>By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.<n> Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - Democratizing Large Language Model-Based Graph Data Augmentation via Latent Knowledge Graphs [22.218522445858344]
Data augmentation is necessary for graph representation learning due to the scarcity and noise present in graph data.<n>We propose a black-box context-driven graph data augmentation approach, with the guidance of LLMs -- DemoGraph.<n>Our approach excels in scenarios involving electronic health records (EHRs), which validates its maximal utilization of contextual knowledge.
arXiv Detail & Related papers (2025-02-19T09:00:32Z) - Deep Semantic Graph Learning via LLM based Node Enhancement [5.312946761836463]
Large Language Models (LLMs) have demonstrated superior capabilities in understanding text semantics.<n>This paper proposes a novel framework that combines Graph Transformer architecture with LLM-enhanced node features.
arXiv Detail & Related papers (2025-02-11T21:55:46Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) has emerged as a promising technological paradigm.<n>We leverage graph description texts with rich semantic context to fundamentally enhance Data quality.<n>This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies.
arXiv Detail & Related papers (2024-12-17T01:41:17Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
Graphs are a fundamental data structure for representing relationships in real-world scenarios.
Applying Large Language Models (LLMs) to graph-related tasks poses significant challenges.
We introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures.
arXiv Detail & Related papers (2024-10-14T17:21:57Z) - A Survey of Large Language Models for Graphs [21.54279919476072]
We conduct an in-depth review of the latest state-of-the-art Large Language Models applied in graph learning.
We introduce a novel taxonomy to categorize existing methods based on their framework design.
We explore the strengths and limitations of each framework, and emphasize potential avenues for future research.
arXiv Detail & Related papers (2024-05-10T18:05:37Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Which Modality should I use -- Text, Motif, or Image? : Understanding Graphs with Large Language Models [14.251972223585765]
This paper introduces a new approach to encoding a graph with diverse modalities, such as text, image, and motif, and prompts to approximate a graph's global connectivity.
The study also presents GraphTMI, a novel benchmark for evaluating Large Language Models (LLMs) in graph structure analysis.
arXiv Detail & Related papers (2023-11-16T12:45:41Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.