Learning with Local Search MCMC Layers
- URL: http://arxiv.org/abs/2505.14240v1
- Date: Tue, 20 May 2025 11:47:42 GMT
- Title: Learning with Local Search MCMC Layers
- Authors: Germain Vivier-Ardisson, Mathieu Blondel, Axel Parmentier,
- Abstract summary: We introduce a theoretically-principled approach for learning with inexact solvers.<n>We transform problem-specific neighborhood systems used in local searchs into proposal distributions.<n>We demonstrate our approach on a large-scale dynamic vehicle routing problem with time windows.
- Score: 11.772298193297013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating combinatorial optimization layers into neural networks has recently attracted significant research interest. However, many existing approaches lack theoretical guarantees or fail to perform adequately when relying on inexact solvers. This is a critical limitation, as many operations research problems are NP-hard, often necessitating the use of neighborhood-based local search heuristics. These heuristics iteratively generate and evaluate candidate solutions based on an acceptance rule. In this paper, we introduce a theoretically-principled approach for learning with such inexact combinatorial solvers. Inspired by the connection between simulated annealing and Metropolis-Hastings, we propose to transform problem-specific neighborhood systems used in local search heuristics into proposal distributions, implementing MCMC on the combinatorial space of feasible solutions. This allows us to construct differentiable combinatorial layers and associated loss functions. Replacing an exact solver by a local search strongly reduces the computational burden of learning on many applications. We demonstrate our approach on a large-scale dynamic vehicle routing problem with time windows.
Related papers
- A Random-Key Optimizer for Combinatorial Optimization [0.0]
The Random-Key hubs (RKO) is a versatile and efficient local search method tailored for optimization problems.
Using the random-key concept, RKO encodes solutions as vectors of random keys that are subsequently decoded into feasible solutions via problem-specific decoders.
The RKO framework is able to combine a plethora of classic metaheuristics, each capable of operating independently or in parallel, with solution sharing facilitated through an elite solution pool.
arXiv Detail & Related papers (2024-11-06T22:23:29Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
We propose a decompose-route-improve (DRI) framework that groups customers using clustering.
Its similarity metric incorporates customers' spatial, temporal, and demand data.
We apply pruned local search (LS) between solved subproblems to improve the overall solution.
arXiv Detail & Related papers (2024-01-20T06:06:01Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Learning to Control Local Search for Combinatorial Optimization [4.243592852049962]
A zoo of generic as well as problem-specific variants of local search is commonly used to compute approximate solutions.
In this paper we identify three independent algorithmic aspects of such local search algorithms and formalize their sequential selection over an optimization process.
We show that NeuroLS is able to outperform both, well-known general purpose local search controllers from Operations Research as well as latest machine learning-based approaches.
arXiv Detail & Related papers (2022-06-27T10:48:56Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z) - Frequent Itemset-driven Search for Finding Minimum Node Separators in
Complex Networks [61.2383572324176]
We propose a frequent itemset-driven search approach, which integrates the concept of frequent itemset mining in data mining into the well-known memetic search framework.
It iteratively employs the frequent itemset recombination operator to generate promising offspring solution based on itemsets that frequently occur in high-quality solutions.
In particular, it discovers 29 new upper bounds and matches 18 previous best-known bounds.
arXiv Detail & Related papers (2022-01-18T11:16:40Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Reinforcement Learning for Combinatorial Optimization: A Survey [12.323976053967066]
Many traditional algorithms for solving optimization problems involve using hand-crafteds that sequentially construct a solution.
Reinforcement learning (RL) proposes a good alternative to automate the search of theses by training an agent in a supervised or self-supervised manner.
arXiv Detail & Related papers (2020-03-07T16:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.