Enhancing Classification with Semi-Supervised Deep Learning Using Distance-Based Sample Weights
- URL: http://arxiv.org/abs/2505.14345v1
- Date: Tue, 20 May 2025 13:29:04 GMT
- Title: Enhancing Classification with Semi-Supervised Deep Learning Using Distance-Based Sample Weights
- Authors: Aydin Abedinia, Shima Tabakhi, Vahid Seydi,
- Abstract summary: This work proposes a semi-supervised framework that prioritizes training samples based on their proximity to test data.<n> Experiments on twelve benchmark datasets demonstrate significant improvements across key metrics, including accuracy, precision, and recall.<n>This framework provides a robust and practical solution for semi-supervised learning, with potential applications in domains such as healthcare and security.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in semi-supervised deep learning have introduced effective strategies for leveraging both labeled and unlabeled data to improve classification performance. This work proposes a semi-supervised framework that utilizes a distance-based weighting mechanism to prioritize critical training samples based on their proximity to test data. By focusing on the most informative examples, the method enhances model generalization and robustness, particularly in challenging scenarios with noisy or imbalanced datasets. Building on techniques such as uncertainty consistency and graph-based representations, the approach addresses key challenges of limited labeled data while maintaining scalability. Experiments on twelve benchmark datasets demonstrate significant improvements across key metrics, including accuracy, precision, and recall, consistently outperforming existing methods. This framework provides a robust and practical solution for semi-supervised learning, with potential applications in domains such as healthcare and security where data limitations pose significant challenges.
Related papers
- Feedback-Driven Pseudo-Label Reliability Assessment: Redefining Thresholding for Semi-Supervised Semantic Segmentation [5.7977777220041204]
A common practice in pseudo-supervision is filtering pseudo-labels based on pre-defined confidence thresholds or entropy.<n>We propose Ensemble-of-Confidence Reinforcement (ENCORE), a dynamic feedback-driven thresholding strategy for pseudo-label selection.<n>Our method seamlessly integrates into existing pseudo-supervision frameworks and significantly improves segmentation performance.
arXiv Detail & Related papers (2025-05-12T15:58:08Z) - Improving the Efficiency of Self-Supervised Adversarial Training through Latent Clustering-Based Selection [2.7554677967598047]
adversarially robust learning is widely recognized to demand significantly more training examples.<n>Recent works propose the use of self-supervised adversarial training with external or synthetically generated unlabeled data to enhance model robustness.<n>We propose novel methods to strategically select a small subset of unlabeled data essential for SSAT and robustness improvement.
arXiv Detail & Related papers (2025-01-15T15:47:49Z) - SeMi: When Imbalanced Semi-Supervised Learning Meets Mining Hard Examples [54.760757107700755]
Semi-Supervised Learning (SSL) can leverage abundant unlabeled data to boost model performance.<n>The class-imbalanced data distribution in real-world scenarios poses great challenges to SSL, resulting in performance degradation.<n>We propose a method that enhances the performance of Imbalanced Semi-Supervised Learning by Mining Hard Examples (SeMi)
arXiv Detail & Related papers (2025-01-10T14:35:16Z) - Learning from Neighbors: Category Extrapolation for Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.<n>We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.<n>To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Towards Accelerated Model Training via Bayesian Data Selection [45.62338106716745]
We propose a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
Recent work has proposed a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
This work solves these problems by leveraging a lightweight Bayesian treatment and incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained models.
arXiv Detail & Related papers (2023-08-21T07:58:15Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.