Towards Embodied Cognition in Robots via Spatially Grounded Synthetic Worlds
- URL: http://arxiv.org/abs/2505.14366v1
- Date: Tue, 20 May 2025 13:49:09 GMT
- Title: Towards Embodied Cognition in Robots via Spatially Grounded Synthetic Worlds
- Authors: Joel Currie, Gioele Migno, Enrico Piacenti, Maria Elena Giannaccini, Patric Bach, Davide De Tommaso, Agnieszka Wykowska,
- Abstract summary: We present a conceptual framework for training Vision-Language Models (VLMs) to perform Visual Perspective Taking (VPT)<n>We introduce a synthetic dataset, generated in NVIDIA Omniverse, that enables supervised learning for spatial reasoning tasks.<n>This work serves as a foundational step toward embodied AI systems capable of spatial understanding in interactive human-robot scenarios.
- Score: 1.696186398088554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a conceptual framework for training Vision-Language Models (VLMs) to perform Visual Perspective Taking (VPT), a core capability for embodied cognition essential for Human-Robot Interaction (HRI). As a first step toward this goal, we introduce a synthetic dataset, generated in NVIDIA Omniverse, that enables supervised learning for spatial reasoning tasks. Each instance includes an RGB image, a natural language description, and a ground-truth 4X4 transformation matrix representing object pose. We focus on inferring Z-axis distance as a foundational skill, with future extensions targeting full 6 Degrees Of Freedom (DOFs) reasoning. The dataset is publicly available to support further research. This work serves as a foundational step toward embodied AI systems capable of spatial understanding in interactive human-robot scenarios.
Related papers
- SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes [105.8644620467576]
We introduce Stextscurprise3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes.<n>Stextscurprise3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2.<n>The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name.
arXiv Detail & Related papers (2025-07-10T14:01:24Z) - Imagine, Verify, Execute: Memory-Guided Agentic Exploration with Vision-Language Models [60.675955082094944]
We present IVE, an agentic exploration framework inspired by human curiosity.<n>We evaluate IVE in both simulated and real-world tabletop environments.
arXiv Detail & Related papers (2025-05-12T17:59:11Z) - EnerVerse: Envisioning Embodied Future Space for Robotics Manipulation [55.26713167507132]
We introduce a generative robotics foundation model that constructs and interprets embodied spaces.<n>EnerVerse employs an autoregressive video diffusion framework to predict future embodied spaces from instructions, enhanced by a sparse context memory for long-term reasoning.<n>We present EnerVerse-D, a data engine pipeline combining the generative model with 4D Gaussian Splatting, forming a self-reinforcing data loop to reduce the sim-to-real gap.
arXiv Detail & Related papers (2025-01-03T17:00:33Z) - RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics [26.42651735582044]
We introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics.<n>It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics.<n>Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
arXiv Detail & Related papers (2024-11-25T16:21:34Z) - Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
Reasoning about spatial relationships between objects is essential for many real-world robotic tasks.
We introduce a structured probabilistic approach that integrates rich 3D geometric features with state-of-the-art open-vocabulary object detectors.
The approach is evaluated and compared against zero-shot performance of the state-of-the-art Vision and Language Models (VLMs) on spatial reasoning tasks.
arXiv Detail & Related papers (2024-10-09T19:37:01Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
We introduce an interactive robotic manipulation framework called Polaris.
Polaris integrates perception and interaction by utilizing GPT-4 alongside grounded vision models.
We propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline.
arXiv Detail & Related papers (2024-08-15T06:40:38Z) - Space-LLaVA: a Vision-Language Model Adapted to Extraterrestrial Applications [14.89043819048682]
We see three core challenges in the future of space robotics that motivate building FM for space robotics.<n>As a firststep towards a space foundation model model, we augment three extraterrestrial databases with fine-grained annotations.<n>We fine-tune a Vision-Language Model to adapt to the semantic features in an extraterrestrial environment.
arXiv Detail & Related papers (2024-08-12T05:07:24Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
We introduce Marking Open-world Keypoint Affordances (MOKA) to solve robotic manipulation tasks specified by free-form language instructions.
Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world.
We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
arXiv Detail & Related papers (2024-03-05T18:08:45Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
This dissertation aims to teach a robot unknown objects in the context of Human-Robot Interaction (HRI)
The combination of eye tracking and Augmented Reality created a powerful synergy that empowered the human teacher to communicate with the robot.
The robot's object detection capabilities exhibited comparable performance to state-of-the-art object detectors trained on extensive datasets.
arXiv Detail & Related papers (2023-12-12T11:34:43Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that can be extracted for robot manipulation.
We aim to synthesize robot trajectories for a variety of manipulation tasks given an open-set of instructions and an open-set of objects.
We demonstrate how the proposed framework can benefit from online experiences by efficiently learning a dynamics model for scenes that involve contact-rich interactions.
arXiv Detail & Related papers (2023-07-12T07:40:48Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
We develop an approach for learning visual affordances for guiding robot exploration.
We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE.
We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.
arXiv Detail & Related papers (2023-05-28T17:53:09Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATE is a robot system that interacts with human through natural language and grasps a specified object in clutter.
We train separate neural networks for object detection, for visual grounding, for question generation, and for OBR detection and grasping.
We build a partially observable Markov decision process (POMDP) that integrates the learned neural network modules.
arXiv Detail & Related papers (2021-08-25T07:35:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.