VisualQuality-R1: Reasoning-Induced Image Quality Assessment via Reinforcement Learning to Rank
- URL: http://arxiv.org/abs/2505.14460v1
- Date: Tue, 20 May 2025 14:56:50 GMT
- Title: VisualQuality-R1: Reasoning-Induced Image Quality Assessment via Reinforcement Learning to Rank
- Authors: Tianhe Wu, Jian Zou, Jie Liang, Lei Zhang, Kede Ma,
- Abstract summary: We introduce VisualQuality-R1, a reasoning-induced no-reference IQA (NR-IQA) model.<n>We train it with reinforcement learning to rank, a learning algorithm tailored to the intrinsically relative nature of visual quality.<n>In experiments, VisualQuality-R1 consistently outperforms discriminative deep learning-based NR-IQA models.
- Score: 23.613534906344753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DeepSeek-R1 has demonstrated remarkable effectiveness in incentivizing reasoning and generalization capabilities of large language models (LLMs) through reinforcement learning. Nevertheless, the potential of reasoning-induced computational modeling has not been thoroughly explored in the context of image quality assessment (IQA), a task critically dependent on visual reasoning. In this paper, we introduce VisualQuality-R1, a reasoning-induced no-reference IQA (NR-IQA) model, and we train it with reinforcement learning to rank, a learning algorithm tailored to the intrinsically relative nature of visual quality. Specifically, for a pair of images, we employ group relative policy optimization to generate multiple quality scores for each image. These estimates are then used to compute comparative probabilities of one image having higher quality than the other under the Thurstone model. Rewards for each quality estimate are defined using continuous fidelity measures rather than discretized binary labels. Extensive experiments show that the proposed VisualQuality-R1 consistently outperforms discriminative deep learning-based NR-IQA models as well as a recent reasoning-induced quality regression method. Moreover, VisualQuality-R1 is capable of generating contextually rich, human-aligned quality descriptions, and supports multi-dataset training without requiring perceptual scale realignment. These features make VisualQuality-R1 especially well-suited for reliably measuring progress in a wide range of image processing tasks like super-resolution and image generation.
Related papers
- Q-Insight: Understanding Image Quality via Visual Reinforcement Learning [27.26829134776367]
Image quality assessment (IQA) focuses on the perceptual visual quality of images, playing a crucial role in downstream tasks such as image reconstruction, compression, and generation.<n>We propose Q-Insight, a reinforcement learning-based model built upon group relative policy optimization (GRPO)<n>We show that Q-Insight substantially outperforms existing state-of-the-art methods in both score regression and degradation perception tasks.
arXiv Detail & Related papers (2025-03-28T17:59:54Z) - Teaching LMMs for Image Quality Scoring and Interpreting [71.1335005098584]
We propose Q-SiT (Quality Scoring and Interpreting joint Teaching), a unified framework that enables image quality scoring and interpreting simultaneously.<n>Q-SiT is the first model capable of simultaneously performing image quality scoring and interpreting tasks, along with its lightweight variant, Q-SiT-mini.<n> Experimental results demonstrate that Q-SiT achieves strong performance in both tasks with superior generalization IQA abilities.
arXiv Detail & Related papers (2025-03-12T09:39:33Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
We introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding.
Q-Ground combines large multi-modality models with detailed visual quality analysis.
Central to our contribution is the introduction of the QGround-100K dataset.
arXiv Detail & Related papers (2024-07-24T06:42:46Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
No-reference image quality assessment (NR-IQA) models can effectively quantify perceived image quality.<n>We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - Learning Generalizable Perceptual Representations for Data-Efficient
No-Reference Image Quality Assessment [7.291687946822539]
A major drawback of state-of-the-art NR-IQA techniques is their reliance on a large number of human annotations.
We enable the learning of low-level quality features to distortion types by introducing a novel quality-aware contrastive loss.
We design zero-shot quality predictions from both pathways in a completely blind setting.
arXiv Detail & Related papers (2023-12-08T05:24:21Z) - Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild [38.197794061203055]
We propose a Mixture of Experts approach to train two separate encoders to learn high-level content and low-level image quality features in an unsupervised setting.
We deploy the complementary low and high-level image representations obtained from the Re-IQA framework to train a linear regression model.
Our method achieves state-of-the-art performance on multiple large-scale image quality assessment databases.
arXiv Detail & Related papers (2023-04-02T05:06:51Z) - SPQE: Structure-and-Perception-Based Quality Evaluation for Image
Super-Resolution [24.584839578742237]
Super-Resolution technique has greatly improved the visual quality of images by enhancing their resolutions.
It also calls for an efficient SR Image Quality Assessment (SR-IQA) to evaluate those algorithms or their generated images.
In emerging deep-learning-based SR, a generated high-quality, visually pleasing image may have different structures from its corresponding low-quality image.
arXiv Detail & Related papers (2022-05-07T07:52:55Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - No-Reference Image Quality Assessment via Feature Fusion and Multi-Task
Learning [29.19484863898778]
Blind or no-reference image quality assessment (NR-IQA) is a fundamental, unsolved, and yet challenging problem.
We propose a simple and yet effective general-purpose no-reference (NR) image quality assessment framework based on multi-task learning.
Our model employs distortion types as well as subjective human scores to predict image quality.
arXiv Detail & Related papers (2020-06-06T05:04:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.