Design and Evaluation of a Microservices Cloud Framework for Online Travel Platforms
- URL: http://arxiv.org/abs/2505.14508v1
- Date: Tue, 20 May 2025 15:36:55 GMT
- Title: Design and Evaluation of a Microservices Cloud Framework for Online Travel Platforms
- Authors: Biman Barua, M. Shamim Kaiser,
- Abstract summary: This paper analyses and integrates a unique Microservices Cloud Framework designed to support Online Travel Platforms (MCF-OTP)<n>MCF-OTPs main goal is to increase the performance, flexibility, and maintenance of online travel platforms via cloud computing and microservice technologies.
- Score: 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Handling online travel agents globally requires efficient and flexible software solution architectures. When it needs to handle thousands of agents and billions of clients data globally. Microservices architecture is used to break down a large program into numerous, smaller services which can run individually and perform individual tasks. This paper analyses and integrates a unique Microservices Cloud Framework designed to support Online Travel Platforms (MCF-OTP). MCF-OTPs main goal is to increase the performance, flexibility, and maintenance of online travel platforms via cloud computing and microservice technologies. Large-scale travel apps, including managing numerous data sources, dealing with traffic peaks, and providing fault tolerance, can be addressed by the suggested framework. The framework increases good interpretation between flawless data synchronization, microservices, and dynamic scaling based on demand technology. An organization framework that optimizes service borders and minimizes inter-service dependencies is recommended. Thus, this can result in elevated development adaptability. In this research, the principal goal is to evaluate MCF-OTPs efficiency using the indicators of fault tolerance and response time. It is indicated by the findings that the MCF-OTP structure excels traditional monolithic designs in terms of dependability and scalability, managing traffic spikes seamlessly and decreasing downtime. The cost-effective analysis helps ascertain the net gain attained by the startup fees and the ongoing operational costs. The cloud-based environment is used to reduce the fracture cost which also helps to increase the efficiency of resource allocation, according to the research.
Related papers
- The Real Barrier to LLM Agent Usability is Agentic ROI [110.31127571114635]
Large Language Model (LLM) agents represent a promising shift in human-AI interaction.<n>We highlight a critical usability gap in high-demand, mass-market applications.
arXiv Detail & Related papers (2025-05-23T11:40:58Z) - Real-Time Performance Optimization of Travel Reservation Systems Using AI and Microservices [1.03590082373586]
This study proposes a hybrid framework that folds an Artificial Intelligence and a Microservices approach for the performance optimization of the system.<n>The AI algorithms forecast demand patterns, optimize the allocation of resources, and enhance decision-making driven by Microservices architecture.
arXiv Detail & Related papers (2024-12-09T16:08:22Z) - Optimizing Airline Reservation Systems with Edge-Enabled Microservices: A Framework for Real-Time Data Processing and Enhanced User Responsiveness [1.03590082373586]
This paper outlines a conceptual framework for the implementation of edge computing in the airline industry.
As edge computing allows for certain activities such as seat inventory checks, booking processes and even confirmation to be done nearer to the user, thus lessening the overall response time and improving the performance of the system.
The framework value should include achieving the high performance of the system such as low latency, high throughput and higher user experience.
arXiv Detail & Related papers (2024-11-19T16:58:15Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
We propose an immersion-aware model trading framework that facilitates data provision for services while ensuring privacy through federated learning (FL)<n>We design an incentive mechanism to incentivize metaverse users (MUs) to contribute high-value models under resource constraints.<n>We develop a fully distributed dynamic reward algorithm based on deep reinforcement learning, without accessing any private information about MUs and other MSPs.
arXiv Detail & Related papers (2024-10-25T16:20:46Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices [20.638612359627952]
As migrating applications into the cloud is universally adopted by the software industry, have proven to be the most suitable and widely accepted architecture pattern for applications deployed on distributed cloud.
Their efficacy is enabled by both technical benefits like reliability, fault isolation, scalability and productivity benefits like ease of asset maintenance and clear ownership boundaries.
In some cases, the complexity of migrating an existing application into the architecture becomes overwhelmingly complex and expensive.
arXiv Detail & Related papers (2024-08-13T02:08:59Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development.
This paper explores the "less is more" paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource constrained devices.
arXiv Detail & Related papers (2024-02-26T18:59:03Z) - Exploring sustainable alternatives for the deployment of microservices
architectures in the cloud [1.3812010983144802]
This paper introduces a novel approach to support cloud deployment of architectures by targeting optimal combinations of application performance, deployment costs, and power consumption.
The results demonstrate the potential of our approach through a comprehensive assessment of the Train Ticket case study.
arXiv Detail & Related papers (2024-02-17T10:06:26Z) - DeepScaler: Holistic Autoscaling for Microservices Based on
Spatiotemporal GNN with Adaptive Graph Learning [4.128665560397244]
This paper presents DeepScaler, a deep learning-based holistic autoscaling approach.
It focuses on coping with service dependencies to optimize service-level agreements (SLA) assurance and cost efficiency.
Experimental results demonstrate that our method implements a more effective autoscaling mechanism for microservice.
arXiv Detail & Related papers (2023-09-02T08:22:21Z) - Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM [62.62684911017472]
Federated learning (FL) enables devices to jointly train shared models while keeping the training data local for privacy purposes.
We introduce a VFL framework with multiple heads (VIM), which takes the separate contribution of each client into account.
VIM achieves significantly higher performance and faster convergence compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-20T23:14:33Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.