MMD-Newton Method for Multi-objective Optimization
- URL: http://arxiv.org/abs/2505.14610v1
- Date: Tue, 20 May 2025 16:56:50 GMT
- Title: MMD-Newton Method for Multi-objective Optimization
- Authors: Hao Wang, Chenyu Shi, Angel E. Rodriguez-Fernandez, Oliver Schütze,
- Abstract summary: We propose using MMD to solve continuous multi-objective optimization problems (MOPs)<n>We devise a novel set-oriented, MMD-based Newton (MMDN) method.<n>We empirically test the hybrid algorithm on 11 widely used benchmark problems.
- Score: 3.8926796690238694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maximum mean discrepancy (MMD) has been widely employed to measure the distance between probability distributions. In this paper, we propose using MMD to solve continuous multi-objective optimization problems (MOPs). For solving MOPs, a common approach is to minimize the distance (e.g., Hausdorff) between a finite approximate set of the Pareto front and a reference set. Viewing these two sets as empirical measures, we propose using MMD to measure the distance between them. To minimize the MMD value, we provide the analytical expression of its gradient and Hessian matrix w.r.t. the search variables, and use them to devise a novel set-oriented, MMD-based Newton (MMDN) method. Also, we analyze the theoretical properties of MMD's gradient and Hessian, including the first-order stationary condition and the eigenspectrum of the Hessian, which are important for verifying the correctness of MMDN. To solve complicated problems, we propose hybridizing MMDN with multiobjective evolutionary algorithms (MOEAs), where we first execute an EA for several iterations to get close to the global Pareto front and then warm-start MMDN with the result of the MOEA to efficiently refine the approximation. We empirically test the hybrid algorithm on 11 widely used benchmark problems, and the results show the hybrid (MMDN + MOEA) can achieve a much better optimization accuracy than EA alone with the same computation budget.
Related papers
- An Experimental Approach for Running-Time Estimation of Multi-objective Evolutionary Algorithms in Numerical Optimization [16.66619776655723]
We propose an experimental approach for estimating upper bounds on the running time of MOEAs without algorithmic assumptions.<n>We conduct comprehensive experiments on five representative MOEAs using the ZDT and DTLZ benchmark suites.<n>Results demonstrate the effectiveness of our approach in estimating upper bounds on the running time without requiring algorithmic or problem simplifications.
arXiv Detail & Related papers (2025-07-03T07:06:14Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Moreau Envelope ADMM for Decentralized Weakly Convex Optimization [55.2289666758254]
This paper proposes a proximal variant of the alternating direction method of multipliers (ADMM) for distributed optimization.
The results of our numerical experiments indicate that our method is faster and more robust than widely-used approaches.
arXiv Detail & Related papers (2023-08-31T14:16:30Z) - Regularization and Variance-Weighted Regression Achieves Minimax
Optimality in Linear MDPs: Theory and Practice [79.48432795639403]
Mirror descent value iteration (MDVI) is an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL)
We study MDVI with linear function approximation through its sample complexity required to identify an $varepsilon$-optimal policy.
We present Variance-Weighted Least-Squares MDVI, the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs.
arXiv Detail & Related papers (2023-05-22T16:13:05Z) - On Accelerating Diffusion-Based Sampling Process via Improved
Integration Approximation [12.882586878998579]
A popular approach to sample a diffusion-based generative model is to solve an ordinary differential equation (ODE)
We consider accelerating several popular ODE-based sampling processes by optimizing certain coefficients via improved integration approximation (IIA)
We show that considerably better FID scores can be achieved by using IIA-EDM, IIA-DDIM, and IIA-DPM-r than the original counterparts.
arXiv Detail & Related papers (2023-04-22T06:06:28Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel [5.618322163107168]
We propose a novel deterministic sampling method to approximate a target distribution $rho*$ by minimizing the kernel discrepancy.<n>We use the EVI-MMD algorithm to solve two types of sampling problems.
arXiv Detail & Related papers (2021-11-21T03:09:07Z) - Robust Multi-view Registration of Point Sets with Laplacian Mixture
Model [25.865100974015412]
We propose a novel probabilistic generative method to align multiple point sets based on the heavy-tailed Laplacian distribution.
We demonstrate the advantages of our method by comparing it with representative state-of-the-art approaches on benchmark challenging data sets.
arXiv Detail & Related papers (2021-10-26T14:49:09Z) - ConCrete MAP: Learning a Probabilistic Relaxation of Discrete Variables
for Soft Estimation with Low Complexity [9.62543698736491]
ConCrete MAP Detection (CMD) is an iterative detection algorithm for large inverse linear problems.
We show CMD to feature a promising performance complexity trade-off compared to SotA.
Notably, we demonstrate CMD's soft outputs to be reliable for decoders.
arXiv Detail & Related papers (2021-02-25T09:54:25Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.