Reward Reasoning Model
- URL: http://arxiv.org/abs/2505.14674v1
- Date: Tue, 20 May 2025 17:58:03 GMT
- Title: Reward Reasoning Model
- Authors: Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, Furu Wei,
- Abstract summary: Reward Reasoning Models (RRMs) are designed to execute a deliberate reasoning process before generating final rewards.<n>We implement a reinforcement learning framework that fosters self-evolved reward reasoning capabilities.<n> Notably, RRMs can adaptively exploit test-time compute to further improve reward accuracy.
- Score: 104.39256985858428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reward models play a critical role in guiding large language models toward outputs that align with human expectations. However, an open challenge remains in effectively utilizing test-time compute to enhance reward model performance. In this work, we introduce Reward Reasoning Models (RRMs), which are specifically designed to execute a deliberate reasoning process before generating final rewards. Through chain-of-thought reasoning, RRMs leverage additional test-time compute for complex queries where appropriate rewards are not immediately apparent. To develop RRMs, we implement a reinforcement learning framework that fosters self-evolved reward reasoning capabilities without requiring explicit reasoning traces as training data. Experimental results demonstrate that RRMs achieve superior performance on reward modeling benchmarks across diverse domains. Notably, we show that RRMs can adaptively exploit test-time compute to further improve reward accuracy. The pretrained reward reasoning models are available at https://huggingface.co/Reward-Reasoning.
Related papers
- Intra-Trajectory Consistency for Reward Modeling [67.84522106537274]
We develop an intra-trajectory consistency regularization to enforce that adjacent processes with higher next-token generation probability maintain more consistent rewards.<n>We show that the reward model trained with the proposed regularization induces better DPO-aligned policies and achieves better best-of-N (BON) inference-time verification results.
arXiv Detail & Related papers (2025-06-10T12:59:14Z) - Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs)<n>Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations.<n>Reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH.
arXiv Detail & Related papers (2025-05-29T11:40:34Z) - Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models [50.4652276723694]
Think-RM generates flexible, self-guided reasoning traces that support advanced capabilities.<n>Think-RM achieves state-of-the-art results on RM-Bench, outperforming both BT RM and vertically scaled GenRM by 8%.
arXiv Detail & Related papers (2025-05-22T05:56:11Z) - RM-R1: Reward Modeling as Reasoning [81.50471199906738]
Reasoning Reward Models (ReasRMs) formulate reward modeling as a reasoning task.<n>We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1.<n>Our models achieve state-of-the-art performance across three reward model benchmarks on average.
arXiv Detail & Related papers (2025-05-05T06:11:12Z) - Evaluating Robustness of Reward Models for Mathematical Reasoning [14.97819343313859]
We introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH.
We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization.
arXiv Detail & Related papers (2024-10-02T16:39:58Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Let's Reinforce Step by Step [10.65244642965387]
We use Reinforcement Learning from Human Feedback to shape model reasoning processes.
Our results show that the fine-grained reward provided by PRM-based methods enhances accuracy on simple mathematical reasoning.
We also show the critical role reward aggregation functions play in model performance.
arXiv Detail & Related papers (2023-11-10T01:35:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.