NExT-Search: Rebuilding User Feedback Ecosystem for Generative AI Search
- URL: http://arxiv.org/abs/2505.14680v1
- Date: Tue, 20 May 2025 17:59:13 GMT
- Title: NExT-Search: Rebuilding User Feedback Ecosystem for Generative AI Search
- Authors: Sunhao Dai, Wenjie Wang, Liang Pang, Jun Xu, See-Kiong Ng, Ji-Rong Wen, Tat-Seng Chua,
- Abstract summary: We envision NExT-Search, a next-generation paradigm designed to reintroduce fine-grained, process-level feedback into generative AI search.<n> NExT-Search integrates two complementary modes: User Debug Mode, which allows engaged users to intervene at key stages; and Shadow User Mode, where a personalized user agent simulates user preferences.
- Score: 108.42163676745085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI search is reshaping information retrieval by offering end-to-end answers to complex queries, reducing users' reliance on manually browsing and summarizing multiple web pages. However, while this paradigm enhances convenience, it disrupts the feedback-driven improvement loop that has historically powered the evolution of traditional Web search. Web search can continuously improve their ranking models by collecting large-scale, fine-grained user feedback (e.g., clicks, dwell time) at the document level. In contrast, generative AI search operates through a much longer search pipeline, spanning query decomposition, document retrieval, and answer generation, yet typically receives only coarse-grained feedback on the final answer. This introduces a feedback loop disconnect, where user feedback for the final output cannot be effectively mapped back to specific system components, making it difficult to improve each intermediate stage and sustain the feedback loop. In this paper, we envision NExT-Search, a next-generation paradigm designed to reintroduce fine-grained, process-level feedback into generative AI search. NExT-Search integrates two complementary modes: User Debug Mode, which allows engaged users to intervene at key stages; and Shadow User Mode, where a personalized user agent simulates user preferences and provides AI-assisted feedback for less interactive users. Furthermore, we envision how these feedback signals can be leveraged through online adaptation, which refines current search outputs in real-time, and offline update, which aggregates interaction logs to periodically fine-tune query decomposition, retrieval, and generation models. By restoring human control over key stages of the generative AI search pipeline, we believe NExT-Search offers a promising direction for building feedback-rich AI search systems that can evolve continuously alongside human feedback.
Related papers
- Xinyu AI Search: Enhanced Relevance and Comprehensive Results with Rich Answer Presentations [15.89383689179436]
Xinyu AI Search is a novel system that incorporates a query-decomposition graph to dynamically break down complex queries into sub-queries.<n>Our retrieval pipeline enhances diversity through multi-source aggregation and query expansion, while filtering and re-ranking strategies optimize passage relevance.<n>Xinyu AI Search outperforms eight existing technologies in human assessments.
arXiv Detail & Related papers (2025-05-28T00:30:22Z) - Embed Progressive Implicit Preference in Unified Space for Deep Collaborative Filtering [13.24227546548424]
Generalized Neural Ordinal Logistic Regression (GNOLR) is proposed to capture the structured progression of user engagement.<n>GNOLR enhances predictive accuracy, captures the progression of user engagement, and simplifies the retrieval process.<n>Experiments on ten real-world datasets show that GNOLR significantly outperforms state-of-the-art methods in efficiency and adaptability.
arXiv Detail & Related papers (2025-05-27T08:43:35Z) - Unsupervised Query Routing for Retrieval Augmented Generation [64.47987041500966]
We introduce a novel unsupervised method that constructs the "upper-bound" response to evaluate the quality of retrieval-augmented responses.<n>This evaluation enables the decision of the most suitable search engine for a given query.<n>By eliminating manual annotations, our approach can automatically process large-scale real user queries and create training data.
arXiv Detail & Related papers (2025-01-14T02:27:06Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents.
We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase.
We adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback.
arXiv Detail & Related papers (2024-10-13T17:53:50Z) - Improving Retrieval in Sponsored Search by Leveraging Query Context Signals [6.152499434499752]
We propose an approach to enhance query understanding by augmenting queries with rich contextual signals.
We use web search titles and snippets to ground queries in real-world information and utilize GPT-4 to generate query rewrites and explanations.
Our context-aware approach substantially outperforms context-free models.
arXiv Detail & Related papers (2024-07-19T14:28:53Z) - An Interactive Query Generation Assistant using LLM-based Prompt
Modification and User Feedback [9.461978375200102]
The proposed interface is a novel search interface which supports automatic and interactive query generation over a mono-linguial or multi-lingual document collection.
The interface enables the users to refine the queries generated by different LLMs, to provide feedback on the retrieved documents or passages, and is able to incorporate the users' feedback as prompts to generate more effective queries.
arXiv Detail & Related papers (2023-11-19T04:42:24Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
generative retrieval systems often directly return a grounded generated text as a response to a query.
Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval.
arXiv Detail & Related papers (2023-11-08T14:05:00Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
Generative retrieval aims to generate identifier strings of relevant passages as the retrieval target.
We propose a learning-to-rank framework for generative retrieval, dubbed LTRGR.
This framework only requires an additional learning-to-rank training phase to enhance current generative retrieval systems.
arXiv Detail & Related papers (2023-06-27T05:48:14Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - RETE: Retrieval-Enhanced Temporal Event Forecasting on Unified Query
Product Evolutionary Graph [18.826901341496143]
Temporal event forecasting is a new user behavior prediction task in a unified query product evolutionary graph.
We propose a novel RetrievalEnhanced Event forecasting framework.
Unlike existing methods, we propose methods that enhance user representations via roughly connected entities in the whole graph.
arXiv Detail & Related papers (2022-02-12T19:27:56Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers.
We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC.
arXiv Detail & Related papers (2020-05-24T11:37:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.