Tracing Multilingual Factual Knowledge Acquisition in Pretraining
- URL: http://arxiv.org/abs/2505.14824v1
- Date: Tue, 20 May 2025 18:39:56 GMT
- Title: Tracing Multilingual Factual Knowledge Acquisition in Pretraining
- Authors: Yihong Liu, Mingyang Wang, Amir Hossein Kargaran, Felicia Körner, Ercong Nie, Barbara Plank, François Yvon, Hinrich Schütze,
- Abstract summary: Large Language Models (LLMs) are capable of recalling multilingual factual knowledge present in their pretraining data.<n>We trace how factual recall and crosslingual consistency evolve during pretraining, focusing on OLMo-7B.<n>We find that both accuracy and consistency improve over time for most languages.
- Score: 62.95057983661562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are capable of recalling multilingual factual knowledge present in their pretraining data. However, most studies evaluate only the final model, leaving the development of factual recall and crosslingual consistency throughout pretraining largely unexplored. In this work, we trace how factual recall and crosslingual consistency evolve during pretraining, focusing on OLMo-7B as a case study. We find that both accuracy and consistency improve over time for most languages. We show that this improvement is primarily driven by the fact frequency in the pretraining corpus: more frequent facts are more likely to be recalled correctly, regardless of language. Yet, some low-frequency facts in non-English languages can still be correctly recalled. Our analysis reveals that these instances largely benefit from crosslingual transfer of their English counterparts -- an effect that emerges predominantly in the early stages of pretraining. We pinpoint two distinct pathways through which multilingual factual knowledge acquisition occurs: (1) frequency-driven learning, which is dominant and language-agnostic, and (2) crosslingual transfer, which is limited in scale and typically constrained to relation types involving named entities. We release our code and data to facilitate further research at https://github.com/cisnlp/multilingual-fact-tracing.
Related papers
- MoE-LPR: Multilingual Extension of Large Language Models through Mixture-of-Experts with Language Priors Routing [78.62611800987817]
Large Language Models (LLMs) are often English-centric due to the disproportionate distribution of languages in their pre-training data.
We propose a method called MoE-LPR (Mixture-of-Experts with Language Priors) to enhance the multilingual capability.
arXiv Detail & Related papers (2024-08-21T07:43:49Z) - PreAlign: Boosting Cross-Lingual Transfer by Early Establishment of Multilingual Alignment [68.20851615263953]
Large language models demonstrate reasonable multilingual abilities, despite predominantly English-centric pretraining.
The spontaneous multilingual alignment in these models is shown to be weak, leading to unsatisfactory cross-lingual transfer and knowledge sharing.
We propose PreAlign, a framework that establishes multilingual alignment prior to language model pretraining.
arXiv Detail & Related papers (2024-07-23T06:59:53Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.<n>But can these models relate corresponding concepts across languages, i.e., be crosslingual?<n>This study evaluates state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language.
Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language.
We find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance.
arXiv Detail & Related papers (2023-01-18T03:57:53Z) - Language Chameleon: Transformation analysis between languages using
Cross-lingual Post-training based on Pre-trained language models [4.731313022026271]
In this study, we focus on a single low-resource language and perform extensive evaluation and probing experiments using cross-lingual post-training (XPT)
Results show that XPT not only outperforms or performs on par with monolingual models trained with orders of magnitudes more data but also is highly efficient in the transfer process.
arXiv Detail & Related papers (2022-09-14T05:20:52Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Language Contamination Explains the Cross-lingual Capabilities of
English Pretrained Models [79.38278330678965]
We find that common English pretraining corpora contain significant amounts of non-English text.
This leads to hundreds of millions of foreign language tokens in large-scale datasets.
We then demonstrate that even these small percentages of non-English data facilitate cross-lingual transfer for models trained on them.
arXiv Detail & Related papers (2022-04-17T23:56:54Z) - Match the Script, Adapt if Multilingual: Analyzing the Effect of
Multilingual Pretraining on Cross-lingual Transferability [26.553524219316188]
Pretrained multilingual models enable zero-shot learning even for unseen languages.
It is unclear how the number of pretraining languages influences a model's zero-shot learning for languages unseen during pretraining.
arXiv Detail & Related papers (2022-03-21T06:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.