Text Generation Beyond Discrete Token Sampling
- URL: http://arxiv.org/abs/2505.14827v2
- Date: Wed, 28 May 2025 01:56:17 GMT
- Title: Text Generation Beyond Discrete Token Sampling
- Authors: Yufan Zhuang, Liyuan Liu, Chandan Singh, Jingbo Shang, Jianfeng Gao,
- Abstract summary: Mixture of Inputs (MoI) is a training-free method for autoregressive generation.<n>MoI consistently improves performance across multiple models including QwQ-32B, Nemotron-Super-49B, Gemma-3-27B, and DAPO-Qwen-32B.
- Score: 75.96920867382859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In standard autoregressive generation, an LLM predicts the next-token distribution, samples a discrete token, and then discards the distribution, passing only the sampled token as new input. To preserve this distribution's rich information, we propose Mixture of Inputs (MoI), a training-free method for autoregressive generation. After generating a token following the standard paradigm, we construct a new input that blends the generated discrete token with the previously discarded token distribution. Specifically, we employ a Bayesian estimation method that treats the token distribution as the prior, the sampled token as the observation, and replaces the conventional one-hot vector with the continuous posterior expectation as the new model input. MoI allows the model to maintain a richer internal representation throughout the generation process, resulting in improved text quality and reasoning capabilities. On mathematical reasoning, code generation, and PhD-level QA tasks, MoI consistently improves performance across multiple models including QwQ-32B, Nemotron-Super-49B, Gemma-3-27B, and DAPO-Qwen-32B, with no additional training and negligible computational overhead.
Related papers
- Reviving Any-Subset Autoregressive Models with Principled Parallel Sampling and Speculative Decoding [55.2480439325792]
In arbitrary-order language models, it is an open question how to sample tokens in parallel from the correct joint distribution.<n>We find that a different class of models, any-subset autoregressive models (AS-ARMs), holds the solution.<n>We show that AS-ARMs achieve state-of-the-art performance among sub-200M parameter models on infilling benchmark tasks, and nearly match the performance of models 50X larger on code generation.
arXiv Detail & Related papers (2025-04-29T06:33:13Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.<n>We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Distributional Diffusion Models with Scoring Rules [83.38210785728994]
Diffusion models generate high-quality synthetic data.<n> generating high-quality outputs requires many discretization steps.<n>We propose to accomplish sample generation by learning the posterior em distribution of clean data samples.
arXiv Detail & Related papers (2025-02-04T16:59:03Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
Diffusion Forcing is a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels.<n>We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens.
arXiv Detail & Related papers (2024-07-01T15:43:25Z) - From Self-Attention to Markov Models: Unveiling the Dynamics of
Generative Transformers [41.82477691012942]
We study learning a 1-layer self-attention model from a set of prompts and associated output data.
We first establish a precise mapping between the self-attention mechanism and Markov models.
We characterize an intriguing winner-takes-all phenomenon where the generative process implemented by self-attention collapses into sampling a limited subset of tokens.
arXiv Detail & Related papers (2024-02-21T03:51:34Z) - Energy-bounded Learning for Robust Models of Code [16.592638312365164]
In programming, learning code representations has a variety of applications, including code classification, code search, comment generation, bug prediction, and so on.
We propose the use of an energy-bounded learning objective function to assign a higher score to in-distribution samples and a lower score to out-of-distribution samples in order to incorporate such out-of-distribution samples into the training process of source code models.
arXiv Detail & Related papers (2021-12-20T06:28:56Z) - ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators [108.3381301768299]
Masked language modeling (MLM) pre-training methods such as BERT corrupt the input by replacing some tokens with [MASK] and then train a model to reconstruct the original tokens.
We propose a more sample-efficient pre-training task called replaced token detection.
arXiv Detail & Related papers (2020-03-23T21:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.