Topology-aware Detection and Localization of Distributed Denial-of-Service Attacks in Network-on-Chips
- URL: http://arxiv.org/abs/2505.14898v1
- Date: Tue, 20 May 2025 20:49:34 GMT
- Title: Topology-aware Detection and Localization of Distributed Denial-of-Service Attacks in Network-on-Chips
- Authors: Hansika Weerasena, Xiaoguo Jia, Prabhat Mishra,
- Abstract summary: This paper presents a framework to conduct topology-aware detection and localization of DDoS attacks using Graph Neural Networks (GNNs)<n>By modeling the NoC as a graph, our method utilizes traffic features to effectively identify and localize DDoS attacks.<n> Experimental results demonstrate that our approach can detect and localize DDoS attacks with high accuracy (up to 99%) while maintaining consistent performance under diverse attack strategies.
- Score: 2.6490401904186758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network-on-Chip (NoC) enables on-chip communication between diverse cores in modern System-on-Chip (SoC) designs. With its shared communication fabric, NoC has become a focal point for various security threats, especially in heterogeneous and high-performance computing platforms. Among these attacks, Distributed Denial of Service (DDoS) attacks occur when multiple malicious entities collaborate to overwhelm and disrupt access to critical system components, potentially causing severe performance degradation or complete disruption of services. These attacks are particularly challenging to detect due to their distributed nature and dynamic traffic patterns in NoC, which often evade static detection rules or simple profiling. This paper presents a framework to conduct topology-aware detection and localization of DDoS attacks using Graph Neural Networks (GNNs) by analyzing NoC traffic patterns. Specifically, by modeling the NoC as a graph, our method utilizes spatiotemporal traffic features to effectively identify and localize DDoS attacks. Unlike prior works that rely on handcrafted features or threshold-based detection, our GNN-based approach operates directly on raw inter-flit delay data, learning complex traffic dependencies without manual intervention. Experimental results demonstrate that our approach can detect and localize DDoS attacks with high accuracy (up to 99\%) while maintaining consistent performance under diverse attack strategies. Furthermore, the proposed method exhibits strong robustness across varying numbers and placements of malicious IPs, different packet injection rates, application workloads, and architectural configurations, including both 2D mesh and 3D TSV-based NoCs. Our work provides a scalable, flexible, and architecture-agnostic defense mechanism, significantly improving the availability and trustworthiness of on-chip communication in future SoC designs.
Related papers
- A Scalable Hierarchical Intrusion Detection System for Internet of Vehicles [1.6017263994482716]
Internet of Vehicles (IoV) is prone to various cyber threats, ranging from spoofing and Distributed Denial of Services (DDoS) attacks to malware.<n>To safeguard the IoV ecosystem from intrusions, malicious activities, policy violations, intrusion detection systems (IDS) play a critical role by continuously monitoring and analyzing network traffic to identify and mitigate potential threats in real-time.<n>This paper proposes an effective hierarchical classification framework tailored for IoV networks.
arXiv Detail & Related papers (2025-05-22T04:30:26Z) - Feature Selection via GANs (GANFS): Enhancing Machine Learning Models for DDoS Mitigation [0.0]
We introduce a novel Generative Adversarial Network-based Feature Selection (GANFS) method for detecting Distributed Denial of Service (DDoS) attacks.<n>By training a GAN exclusively on attack traffic, GANFS effectively ranks feature importance without relying on full supervision.<n>Results point to the potential of integrating generative learning models into cybersecurity pipelines to build more adaptive and scalable detection systems.
arXiv Detail & Related papers (2025-04-21T20:27:33Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Novel Supervised Deep Learning Solution to Detect Distributed Denial
of Service (DDoS) attacks on Edge Systems using Convolutional Neural Networks
(CNN) [0.41436032949434404]
This project presents a novel deep learning-based approach for detecting DDoS attacks in network traffic.
The algorithm employed in this study exploits the properties of Convolutional Neural Networks (CNN) and common deep learning algorithms.
The results of this study demonstrate the effectiveness of the proposed algorithm in detecting DDOS attacks, achieving an accuracy of.9883 on 2000 unseen flows in network traffic.
arXiv Detail & Related papers (2023-09-11T17:37:35Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
The last decades have seen a growth in the number of cyber-attacks with severe economic and privacy damages.
We propose a novel network representation as a graph of flows that aims to provide relevant topological information for the intrusion detection task.
We present a Graph Neural Network (GNN) based framework responsible for exploiting the proposed graph structure.
arXiv Detail & Related papers (2023-09-11T16:10:12Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - 3D-IDS: Doubly Disentangled Dynamic Intrusion Detection [17.488666929017878]
Network-based intrusion detection system (NIDS) monitors network traffic for malicious activities.<n>Existing methods perform inconsistently in declaring various unknown attacks or detecting diverse known attacks.<n>We propose 3D-IDS, a novel method that aims to tackle the above issues through two-step feature disentanglements and a dynamic graph diffusion scheme.
arXiv Detail & Related papers (2023-07-02T00:26:26Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.