Know When to Abstain: Optimal Selective Classification with Likelihood Ratios
- URL: http://arxiv.org/abs/2505.15008v1
- Date: Wed, 21 May 2025 01:26:21 GMT
- Title: Know When to Abstain: Optimal Selective Classification with Likelihood Ratios
- Authors: Alvin Heng, Harold Soh,
- Abstract summary: We revisit the design of optimal selection functions through the lens of the Neyman-Pearson lemma.<n>We show that this perspective unifies the behavior of several post-hoc selection baselines, and also motivates new approaches to selective classification.<n>We evaluate our proposed methods across a range of vision and language tasks, including both supervised learning and vision-language models.
- Score: 10.317060648446828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selective classification enhances the reliability of predictive models by allowing them to abstain from making uncertain predictions. In this work, we revisit the design of optimal selection functions through the lens of the Neyman--Pearson lemma, a classical result in statistics that characterizes the optimal rejection rule as a likelihood ratio test. We show that this perspective not only unifies the behavior of several post-hoc selection baselines, but also motivates new approaches to selective classification which we propose here. A central focus of our work is the setting of covariate shift, where the input distribution at test time differs from that at training. This realistic and challenging scenario remains relatively underexplored in the context of selective classification. We evaluate our proposed methods across a range of vision and language tasks, including both supervised learning and vision-language models. Our experiments demonstrate that our Neyman--Pearson-informed methods consistently outperform existing baselines, indicating that likelihood ratio-based selection offers a robust mechanism for improving selective classification under covariate shifts. Our code is publicly available at https://github.com/clear-nus/sc-likelihood-ratios.
Related papers
- Deep Neural Network Benchmarks for Selective Classification [27.098996474946446]
Multiple selective classification frameworks exist, most of which rely on deep neural network architectures.
We evaluate these approaches using several criteria, including selective error rate, empirical coverage, distribution of rejected instance's classes, and performance on out-of-distribution instances.
arXiv Detail & Related papers (2024-01-23T12:15:47Z) - How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods for Selective Classification with Deep Neural Networks [1.4502611532302039]
We show that a simple $p$-norm normalization of the logits, followed by taking the maximum logit as the confidence estimator, can lead to considerable gains in selective classification performance.
Our results are shown to be consistent under distribution shift.
arXiv Detail & Related papers (2023-05-24T18:56:55Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - AUC-based Selective Classification [5.406386303264086]
We propose a model-agnostic approach to associate a selection function to a given binary classifier.
We provide both theoretical justifications and a novel algorithm, called $AUCross$, to achieve such a goal.
Experiments show that $AUCross$ succeeds in trading-off coverage for AUC, improving over existing selective classification methods targeted at optimizing accuracy.
arXiv Detail & Related papers (2022-10-19T16:29:50Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Optimal strategies for reject option classifiers [0.0]
In classification with a reject option, the classifier is allowed in uncertain cases to abstain from prediction.
We coin a symmetric definition, the bounded-coverage model, which seeks for a classifier with minimal selective risk and guaranteed coverage.
We propose two algorithms to learn the proper uncertainty score from examples for an arbitrary black-box classifier.
arXiv Detail & Related papers (2021-01-29T11:09:32Z) - Selective Classification Can Magnify Disparities Across Groups [89.14499988774985]
We find that while selective classification can improve average accuracies, it can simultaneously magnify existing accuracy disparities.
Increasing abstentions can even decrease accuracies on some groups.
We train distributionally-robust models that achieve similar full-coverage accuracies across groups and show that selective classification uniformly improves each group.
arXiv Detail & Related papers (2020-10-27T08:51:30Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.