Enhancing Monte Carlo Dropout Performance for Uncertainty Quantification
- URL: http://arxiv.org/abs/2505.15671v1
- Date: Wed, 21 May 2025 15:50:03 GMT
- Title: Enhancing Monte Carlo Dropout Performance for Uncertainty Quantification
- Authors: Hamzeh Asgharnezhad, Afshar Shamsi, Roohallah Alizadehsani, Arash Mohammadi, Hamid Alinejad-Rokny,
- Abstract summary: Knowing the uncertainty associated with the output of a deep neural network is of paramount importance in making trustworthy decisions.<n>We introduce innovative frameworks that enhance Monte Carlo Dropout (MCD) by integrating different search solutions.<n>Our proposed framework outperforms the MCD baseline by 2-3% on average in terms of both conventional accuracy and uncertainty accuracy.<n>These results highlight the potential of our approach to enhance the trustworthiness of deep learning models in safety-critical applications.
- Score: 5.41721607488562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowing the uncertainty associated with the output of a deep neural network is of paramount importance in making trustworthy decisions, particularly in high-stakes fields like medical diagnosis and autonomous systems. Monte Carlo Dropout (MCD) is a widely used method for uncertainty quantification, as it can be easily integrated into various deep architectures. However, conventional MCD often struggles with providing well-calibrated uncertainty estimates. To address this, we introduce innovative frameworks that enhances MCD by integrating different search solutions namely Grey Wolf Optimizer (GWO), Bayesian Optimization (BO), and Particle Swarm Optimization (PSO) as well as an uncertainty-aware loss function, thereby improving the reliability of uncertainty quantification. We conduct comprehensive experiments using different backbones, namely DenseNet121, ResNet50, and VGG16, on various datasets, including Cats vs. Dogs, Myocarditis, Wisconsin, and a synthetic dataset (Circles). Our proposed algorithm outperforms the MCD baseline by 2-3% on average in terms of both conventional accuracy and uncertainty accuracy while achieving significantly better calibration. These results highlight the potential of our approach to enhance the trustworthiness of deep learning models in safety-critical applications.
Related papers
- Understanding the Trade-offs in Accuracy and Uncertainty Quantification: Architecture and Inference Choices in Bayesian Neural Networks [0.276240219662896]
Despite promising theoretical results, the properties of even the most commonly used posterior approximations are often questioned.<n>The dimensions of modern deep models, coupled with the lack of identifiability, make Markov chain Monte Carlo (MCMC) unable to fully explore the posterior.<n> variational inference benefits from improved computational complexity but lacks the multimodalal guarantees of sampling-based inference.<n> stacking and ensembles of variational approximations provided comparable accuracy to MCMC at a much-reduced cost.
arXiv Detail & Related papers (2025-03-14T18:55:48Z) - Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
We propose a method to inherently enhance the robustness and inference accuracy of BayNNs deployed in in-memory computing architectures.
Empirical results show a graceful degradation in inference accuracy, with an improvement of up to $58.11%$.
arXiv Detail & Related papers (2024-01-23T00:27:31Z) - On Uncertainty Calibration and Selective Generation in Probabilistic
Neural Summarization: A Benchmark Study [14.041071717005362]
Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty.
This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications.
Probabilistic deep learning methods are common solutions to the miscalibration problem, but their relative effectiveness in complex autoregressive summarization tasks are not well-understood.
arXiv Detail & Related papers (2023-04-17T23:06:28Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
Predictive uncertainty supplements model predictions and enables improved functionality of downstream tasks.
We tackle this problem by building upon Monte Carlo Dropout (MCDO) models using the Axolotl framework.
We conduct experiments on (1) a multi-class classification task using the CIFAR10 dataset, and (2) a more complex human body segmentation task.
arXiv Detail & Related papers (2021-11-11T22:24:15Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
Detectors [8.029049649310213]
We introduce novel gradient-based uncertainty metrics and investigate them for different object detection architectures.
Experiments show significant improvements in true positive / false positive discrimination and prediction of intersection over union.
We also find improvement over Monte-Carlo dropout uncertainty metrics and further significant boosts by aggregating different sources of uncertainty metrics.
arXiv Detail & Related papers (2021-07-09T16:04:11Z) - Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings [33.25969141014772]
Uncertainty estimation is a widely researched method to highlight the confidence of machine learning systems in deployment.
Sequential and parallel ensemble techniques have shown improved performance of ML systems in multi-modal settings.
We propose an uncertainty-aware boosting technique for multi-modal ensembling in order to focus on the data points with higher associated uncertainty estimates.
arXiv Detail & Related papers (2021-04-21T18:28:13Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Providing reliability in Recommender Systems through Bernoulli Matrix
Factorization [63.732639864601914]
This paper proposes Bernoulli Matrix Factorization (BeMF) to provide both prediction values and reliability values.
BeMF acts on model-based collaborative filtering rather than on memory-based filtering.
The more reliable a prediction is, the less liable it is to be wrong.
arXiv Detail & Related papers (2020-06-05T14:24:27Z) - PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees [77.67258935234403]
We provide a theoretical analysis using the PAC-Bayesian framework and derive novel generalization bounds for meta-learning.
We develop a class of PAC-optimal meta-learning algorithms with performance guarantees and a principled meta-level regularization.
arXiv Detail & Related papers (2020-02-13T15:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.