STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs
- URL: http://arxiv.org/abs/2505.15804v3
- Date: Thu, 10 Jul 2025 17:36:35 GMT
- Title: STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs
- Authors: Zongzhao Li, Zongyang Ma, Mingze Li, Songyou Li, Yu Rong, Tingyang Xu, Ziqi Zhang, Deli Zhao, Wenbing Huang,
- Abstract summary: Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning.<n>We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints.<n>We propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR.
- Score: 49.41782982417187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.
Related papers
- SVQA-R1: Reinforcing Spatial Reasoning in MLLMs via View-Consistent Reward Optimization [57.484274282231226]
We propose SVQA-R1, the first framework to extend R1-style training to spatial VQA.<n>In particular, we introduce Spatial-GRPO, a novel group-wise RL strategy that constructs view-consistent rewards by perturbing spatial relations between objects.<n>Our model, SVQA-R1, not only dramatically improved accuracy on spatial VQA benchmarks but also exhibits interpretable reasoning paths even without using supervised fine-tuning data.
arXiv Detail & Related papers (2025-06-02T06:58:43Z) - Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought [58.321044666612174]
Vad-R1 is an end-to-end MLLM-based framework for Video Anomaly Reasoning.<n>We design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies.<n>We also propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs.
arXiv Detail & Related papers (2025-05-26T12:05:16Z) - Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning [3.364797975300393]
We present Observe-R1, a novel framework aimed at enhancing the reasoning capabilities of multimodal large language models (MLLMs)<n>We construct the NeuraLadder dataset, which is organized and sampled according to the difficulty and complexity of data samples for RL training.<n>Experiments with the Qwen2.5-VL-3B and Qwen2.5-VL-7B models on 20k samples from the NeuraLadder dataset show that Observe-R1 outperforms a series of larger reasoning models on both reasoning and general benchmarks.
arXiv Detail & Related papers (2025-05-18T14:08:03Z) - VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model [29.524164786422368]
Recently, DeepSeek R1 has shown that reinforcement learning can substantially improve the reasoning capabilities of Large Language Models (LLMs)<n>We investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs)<n>We develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks.
arXiv Detail & Related papers (2025-04-10T10:05:15Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.<n>Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.<n>We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
arXiv Detail & Related papers (2025-04-07T02:42:07Z) - SpaceR: Reinforcing MLLMs in Video Spatial Reasoning [70.7401015322983]
Video spatial reasoning poses a significant challenge for existing Multimodal Large Language Models (MLLMs)<n>This limitation stems primarily from 1) the absence of high-quality datasets for this task, and 2) the lack of effective training strategies to develop spatial reasoning capabilities.<n>Motivated by the success of Reinforcement Learning with Verifiable Reward (RLVR) in unlocking spatial reasoning abilities, this aims to improve MLLMs in video spatial reasoning through the RLVR paradigm.
arXiv Detail & Related papers (2025-04-02T15:12:17Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models [24.45348222168512]
We propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability.<n>Our model achieves an average improvement of $sim$6% across various multimodal math reasoning benchmarks.<n>Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1.
arXiv Detail & Related papers (2025-03-09T20:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.