Adversarially Robust Spiking Neural Networks with Sparse Connectivity
- URL: http://arxiv.org/abs/2505.15833v1
- Date: Fri, 16 May 2025 07:52:51 GMT
- Title: Adversarially Robust Spiking Neural Networks with Sparse Connectivity
- Authors: Mathias Schmolli, Maximilian Baronig, Robert Legenstein, Ozan Ă–zdenizci,
- Abstract summary: We introduce a neural network conversion algorithm designed to produce sparse and adversarially robust spiking neural networks (SNNs)<n>Our approach combines the energy-efficient architecture of SNNs with a novel conversion algorithm, leading to enhanced energy and memory efficiency through sparse connectivity and activations.<n>Our models are shown to achieve up to 100x reduction in the number of weights to be stored in memory, with an estimated 8.6x increase in energy efficiency compared to dense SNNs.
- Score: 13.220581846415957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deployment of deep neural networks in resource-constrained embedded systems requires innovative algorithmic solutions to facilitate their energy and memory efficiency. To further ensure the reliability of these systems against malicious actors, recent works have extensively studied adversarial robustness of existing architectures. Our work focuses on the intersection of adversarial robustness, memory- and energy-efficiency in neural networks. We introduce a neural network conversion algorithm designed to produce sparse and adversarially robust spiking neural networks (SNNs) by leveraging the sparse connectivity and weights from a robustly pretrained artificial neural network (ANN). Our approach combines the energy-efficient architecture of SNNs with a novel conversion algorithm, leading to state-of-the-art performance with enhanced energy and memory efficiency through sparse connectivity and activations. Our models are shown to achieve up to 100x reduction in the number of weights to be stored in memory, with an estimated 8.6x increase in energy efficiency compared to dense SNNs, while maintaining high performance and robustness against adversarial threats.
Related papers
- Adaptively Pruned Spiking Neural Networks for Energy-Efficient Intracortical Neural Decoding [0.06181089784338582]
Spiking Neural Networks (SNNs) on neuromorphic hardware have demonstrated remarkable efficiency in neural decoding.<n>We introduce a novel adaptive pruning algorithm specifically designed for SNNs with high activation sparsity, targeting intracortical neural decoding.
arXiv Detail & Related papers (2025-04-15T19:16:34Z) - Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks [57.17129753411926]
Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs)<n>We propose SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR.
arXiv Detail & Related papers (2025-03-06T09:06:06Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications.
We describe advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient SNNs.
We discuss the potential path forward for research in building deployable SNN systems.
arXiv Detail & Related papers (2023-12-02T19:47:00Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - SpikeDyn: A Framework for Energy-Efficient Spiking Neural Networks with
Continual and Unsupervised Learning Capabilities in Dynamic Environments [14.727296040550392]
Spiking Neural Networks (SNNs) bear the potential of efficient unsupervised and continual learning capabilities because of their biological plausibility.
We propose SpikeDyn, a framework for energy-efficient SNNs with continual and unsupervised learning capabilities in dynamic environments.
arXiv Detail & Related papers (2021-02-28T08:26:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.