Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy
- URL: http://arxiv.org/abs/2505.15844v1
- Date: Sun, 18 May 2025 21:46:45 GMT
- Title: Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy
- Authors: Yousuf Islam, Md. Jalal Uddin Chowdhury, Sumon Chandra Das,
- Abstract summary: The present work develops and validates a data-driven and interpretable machine-learning framework designed to predict strokes.<n>Ten routinely gathered demographic, lifestyle, and clinical variables were sourced from a public cohort of 4,981 records.<n>The proposed model achieved an accuracy rate of 97.2% and an F1-score of 97.15%, indicating a significant enhancement compared to the leading individual model.
- Score: 0.9999629695552196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain stroke remains one of the principal causes of death and disability worldwide, yet most tabular-data prediction models still hover below the 95% accuracy threshold, limiting real-world utility. Addressing this gap, the present work develops and validates a completely data-driven and interpretable machine-learning framework designed to predict strokes using ten routinely gathered demographic, lifestyle, and clinical variables sourced from a public cohort of 4,981 records. We employ a detailed exploratory data analysis (EDA) to understand the dataset's structure and distribution, followed by rigorous data preprocessing, including handling missing values, outlier removal, and class imbalance correction using Synthetic Minority Over-sampling Technique (SMOTE). To streamline feature selection, point-biserial correlation and random-forest Gini importance were utilized, and ten varied algorithms-encompassing tree ensembles, boosting, kernel methods, and a multilayer neural network-were optimized using stratified five-fold cross-validation. Their predictions based on probabilities helped us build the proposed model, which included Random Forest, XGBoost, LightGBM, and a support-vector classifier, with logistic regression acting as a meta-learner. The proposed model achieved an accuracy rate of 97.2% and an F1-score of 97.15%, indicating a significant enhancement compared to the leading individual model, LightGBM, which had an accuracy of 91.4%. Our study's findings indicate that rigorous preprocessing, coupled with a diverse hybrid model, can convert low-cost tabular data into a nearly clinical-grade stroke-risk assessment tool.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
Brain tumor classification using MRI images is critical in medical diagnostics, where early and accurate detection significantly impacts patient outcomes.<n>Recent advancements in deep learning (DL) have shown promise, but many models struggle with balancing accuracy and computational efficiency.<n>We propose a novel model architecture integrating separable convolutions and squeeze and excitation (SE) blocks, designed to enhance feature extraction while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-01T21:06:42Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL)
We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability.
Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time.
arXiv Detail & Related papers (2022-07-14T10:04:18Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
An efficient survival classification model is presented in a comprehensive manner.
A synthetic dataset is generated by imputing the missing values, transforming the data using dummy variable encoding, and compressing the dataset from 59 features to the 11 most correlated features using Chi-squared feature selection.
Several supervised ML methods were trained in this regard, like Decision Tree, Random Forest, Logistic Regression, K-Nearest Neighbors, Gradient Boosting, Ada Boost, and XG Boost.
arXiv Detail & Related papers (2022-01-22T08:01:22Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.