What Lives? A meta-analysis of diverse opinions on the definition of life
- URL: http://arxiv.org/abs/2505.15849v2
- Date: Wed, 06 Aug 2025 12:47:41 GMT
- Title: What Lives? A meta-analysis of diverse opinions on the definition of life
- Authors: Reed Bender, Karina Kofman, Blaise Agüera y Arcas, Michael Levin,
- Abstract summary: No single definition for life has yet achieved universal acceptance.<n>Advances in synthetic biology, artificial intelligence, and astrobiology challenge our traditional conceptions of what it means to be alive.<n>We use a methodological approach that leverages large language models to analyze a set of definitions of life provided by a curated set of cross-disciplinary experts.
- Score: 1.0419257013133403
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The question of "what is life?" has challenged scientists and philosophers for centuries, producing an array of definitions that reflect both the mystery of its emergence and the diversity of disciplinary perspectives brought to bear on the question. Despite significant progress in our understanding of biological systems, psychology, computation, and information theory, no single definition for life has yet achieved universal acceptance. This challenge becomes increasingly urgent as advances in synthetic biology, artificial intelligence, and astrobiology challenge our traditional conceptions of what it means to be alive. We undertook a methodological approach that leverages large language models (LLMs) to analyze a set of definitions of life provided by a curated set of cross-disciplinary experts. We used a novel pairwise correlation analysis to map the definitions into distinct feature vectors, followed by agglomerative clustering, intra-cluster semantic analysis, and t-SNE projection to reveal underlying conceptual archetypes. This methodology revealed a continuous landscape of the themes relating to the definition of life, suggesting that what has historically been approached as a binary taxonomic problem should be instead conceived as differentiated perspectives within a unified conceptual latent space. We offer a new methodological bridge between reductionist and holistic approaches to fundamental questions in science and philosophy, demonstrating how computational semantic analysis can reveal conceptual patterns across disciplinary boundaries, and opening similar pathways for addressing other contested definitional territories across the sciences.
Related papers
- Noosemia: toward a Cognitive and Phenomenological Account of Intentionality Attribution in Human-Generative AI Interaction [4.022364531869169]
This paper introduces and formalizes Noosemia, a novel cognitive-phenomenological phenomenon emerging from human interaction with generative AI systems.<n>We propose a multidisciplinary framework to explain how, under certain conditions, users attribute intentionality, agency, and even interiority to these systems.
arXiv Detail & Related papers (2025-08-04T17:10:08Z) - From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning [52.32745233116143]
Humans organize knowledge into compact categories through semantic compression.<n>Large Language Models (LLMs) demonstrate remarkable linguistic abilities.<n>But whether their internal representations strike a human-like trade-off between compression and semantic fidelity is unclear.
arXiv Detail & Related papers (2025-05-21T16:29:00Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
Large language models (LLMs) trained exclusively through next-token prediction over language data exhibit remarkably human-like behaviors.<n>Are these models developing concepts akin to humans, and if so, how are such concepts represented and organized?<n>Our results demonstrate that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts.<n>These findings establish that structured, human-like conceptual representations can naturally emerge from language prediction without real-world grounding.
arXiv Detail & Related papers (2025-01-21T23:54:17Z) - The Cognitive Revolution in Interpretability: From Explaining Behavior to Interpreting Representations and Algorithms [3.3653074379567096]
mechanistic interpretability (MI) has emerged as a distinct research area studying the features and implicit algorithms learned by foundation models such as large language models.
We argue that current methods are ripe to facilitate a transition in deep learning interpretation echoing the "cognitive revolution" in 20th-century psychology.
We propose a taxonomy mirroring key parallels in computational neuroscience to describe two broad categories of MI research.
arXiv Detail & Related papers (2024-08-11T20:50:16Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - A Category-theoretical Meta-analysis of Definitions of Disentanglement [97.34033555407403]
Disentangling the factors of variation in data is a fundamental concept in machine learning.
This paper presents a meta-analysis of existing definitions of disentanglement.
arXiv Detail & Related papers (2023-05-11T15:24:20Z) - Intrinsic Physical Concepts Discovery with Object-Centric Predictive
Models [86.25460882547581]
We introduce the PHYsical Concepts Inference NEtwork (PHYCINE), a system that infers physical concepts in different abstract levels without supervision.
We show that object representations containing the discovered physical concepts variables could help achieve better performance in causal reasoning tasks.
arXiv Detail & Related papers (2023-03-03T11:52:21Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
This report shows how representation learning can be used to induce concepts from raw data.
The main technical goal of this report is to show how techniques from representation learning can be married with a lattice-theoretic formulation of conceptual spaces.
arXiv Detail & Related papers (2021-01-13T15:22:01Z) - On the Merging of Domain-Specific Heterogeneous Ontologies using Wordnet
and Web Pattern-based Queries [0.0]
We aim at providing a formal, explicit and shared conceptualization and understanding of common domains between different communities.
Ontologies allow for concepts and their constraints of a specific domain to be explicitly defined.
arXiv Detail & Related papers (2020-04-30T05:03:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.