Multi-omic Causal Discovery using Genotypes and Gene Expression
- URL: http://arxiv.org/abs/2505.15866v1
- Date: Wed, 21 May 2025 11:52:23 GMT
- Title: Multi-omic Causal Discovery using Genotypes and Gene Expression
- Authors: Stephen Asiedu, David Watson,
- Abstract summary: We introduce GENESIS, a constraint-based causal algorithm to infer ancestral relationships in transcriptomic data.<n>By integrating genotypes as fixed causal anchors, GENESIS provides a principled head start'' to classical causal discovery algorithms.<n>This framework offers a powerful avenue for uncovering causal pathways in complex traits, with promising applications to functional genomics, drug discovery, and precision medicine.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery in multi-omic datasets is crucial for understanding the bigger picture of gene regulatory mechanisms, but remains challenging due to high dimensionality, differentiation of direct from indirect relationships, and hidden confounders. We introduce GENESIS (GEne Network inference from Expression SIgnals and SNPs), a constraint-based algorithm that leverages the natural causal precedence of genotypes to infer ancestral relationships in transcriptomic data. Unlike traditional causal discovery methods that start with a fully connected graph, GENESIS initialises an empty ancestrality matrix and iteratively populates it with direct, indirect or non-causal relationships using a series of provably sound marginal and conditional independence tests. By integrating genotypes as fixed causal anchors, GENESIS provides a principled ``head start'' to classical causal discovery algorithms, restricting the search space to biologically plausible edges. We test GENESIS on synthetic and real-world genomic datasets. This framework offers a powerful avenue for uncovering causal pathways in complex traits, with promising applications to functional genomics, drug discovery, and precision medicine.
Related papers
- GRAPE: Heterogeneous Graph Representation Learning for Genetic Perturbation with Coding and Non-Coding Biotype [51.58774936662233]
Building gene regulatory networks (GRN) is essential to understand and predict the effects of genetic perturbations.<n>In this work, we leverage pre-trained large language model and DNA sequence model to extract features from gene descriptions and DNA sequence data.<n>We introduce gene biotype information for the first time in genetic perturbation, simulating the distinct roles of genes with different biotypes in regulating cellular processes.
arXiv Detail & Related papers (2025-05-06T03:35:24Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Gene Regulatory Network Inference in the Presence of Selection Bias and Latent Confounders [14.626706466908386]
Gene Regulatory Network Inference (GRNI) aims to identify causal relationships among genes using gene expression data.<n>Gene expression is influenced by latent confounders, such as non-coding RNAs, which add complexity to GRNI.<n>We propose GISL (Gene Regulatory Network Inference in the presence of Selection bias and Latent confounders) to infer true regulatory relationships in the presence of selection and confounding issues.
arXiv Detail & Related papers (2025-01-17T11:27:58Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Net is a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems.
Our application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes.
arXiv Detail & Related papers (2022-10-18T21:15:10Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - Gene Function Prediction with Gene Interaction Networks: A Context Graph
Kernel Approach [24.234645183601998]
We propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions.
In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs.
arXiv Detail & Related papers (2022-04-22T02:54:01Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.