SCENIR: Visual Semantic Clarity through Unsupervised Scene Graph Retrieval
- URL: http://arxiv.org/abs/2505.15867v1
- Date: Wed, 21 May 2025 11:56:09 GMT
- Title: SCENIR: Visual Semantic Clarity through Unsupervised Scene Graph Retrieval
- Authors: Nikolaos Chaidos, Angeliki Dimitriou, Maria Lymperaiou, Giorgos Stamou,
- Abstract summary: We present SCENIR, a Graph Autoencoder-based unsupervised retrieval framework.<n>Our model demonstrates superior performance across metrics and runtime efficiency, outperforming existing vision-based, multimodal, and supervised GNN approaches.
- Score: 1.51422963961219
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the dominance of convolutional and transformer-based architectures in image-to-image retrieval, these models are prone to biases arising from low-level visual features, such as color. Recognizing the lack of semantic understanding as a key limitation, we propose a novel scene graph-based retrieval framework that emphasizes semantic content over superficial image characteristics. Prior approaches to scene graph retrieval predominantly rely on supervised Graph Neural Networks (GNNs), which require ground truth graph pairs driven from image captions. However, the inconsistency of caption-based supervision stemming from variable text encodings undermine retrieval reliability. To address these, we present SCENIR, a Graph Autoencoder-based unsupervised retrieval framework, which eliminates the dependence on labeled training data. Our model demonstrates superior performance across metrics and runtime efficiency, outperforming existing vision-based, multimodal, and supervised GNN approaches. We further advocate for Graph Edit Distance (GED) as a deterministic and robust ground truth measure for scene graph similarity, replacing the inconsistent caption-based alternatives for the first time in image-to-image retrieval evaluation. Finally, we validate the generalizability of our method by applying it to unannotated datasets via automated scene graph generation, while substantially contributing in advancing state-of-the-art in counterfactual image retrieval.
Related papers
- i-WiViG: Interpretable Window Vision GNN [20.781355086144814]
We tackle the self-interpretability of graph-based vision models by proposing our Interpretable Window Vision GNN (i-WiViG) approach.<n>This is achieved with window-based image graph processing that constrains the node receptive field to a local image region.<n>We evaluate our approach to remote sensing classification and regression tasks, showing it achieves competitive performance.
arXiv Detail & Related papers (2025-03-11T11:31:40Z) - UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters [10.940349832919699]
We propose an unsupervised segmentation framework with a pre-trained ViT.
By harnessing the graph structure inherent within the image, the proposed method achieves a notable performance in segmentation.
The proposed method provides state-of-the-art performance (even comparable to supervised methods) on benchmark image segmentation datasets.
arXiv Detail & Related papers (2024-10-08T15:10:09Z) - SelfGraphVQA: A Self-Supervised Graph Neural Network for Scene-based
Question Answering [0.0]
Scene graphs have emerged as a useful tool for multimodal image analysis.
Current methods that utilize idealized annotated scene graphs struggle to generalize when using predicted scene graphs extracted from images.
Our approach extracts a scene graph from an input image using a pre-trained scene graph generator.
arXiv Detail & Related papers (2023-10-03T07:14:53Z) - FACTUAL: A Benchmark for Faithful and Consistent Textual Scene Graph
Parsing [66.70054075041487]
Existing scene graphs that convert image captions into scene graphs often suffer from two types of errors.
First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness.
Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations.
arXiv Detail & Related papers (2023-05-27T15:38:31Z) - Diffusion-Based Scene Graph to Image Generation with Masked Contrastive
Pre-Training [112.94542676251133]
We propose to learn scene graph embeddings by directly optimizing their alignment with images.
Specifically, we pre-train an encoder to extract both global and local information from scene graphs.
The resulting method, called SGDiff, allows for the semantic manipulation of generated images by modifying scene graph nodes and connections.
arXiv Detail & Related papers (2022-11-21T01:11:19Z) - Learning to Generate Scene Graph from Natural Language Supervision [52.18175340725455]
We propose one of the first methods that learn from image-sentence pairs to extract a graphical representation of localized objects and their relationships within an image, known as scene graph.
We leverage an off-the-shelf object detector to identify and localize object instances, match labels of detected regions to concepts parsed from captions, and thus create "pseudo" labels for learning scene graph.
arXiv Detail & Related papers (2021-09-06T03:38:52Z) - Image-Graph-Image Translation via Auto-Encoding [4.847617604851614]
This work presents the first convolutional neural network that learns an image-to-graph translation task without needing external supervision.
We are the first to present a self-supervised approach based on a fully-differentiable auto-encoder in which the bottleneck encodes the graph's nodes and edges.
arXiv Detail & Related papers (2020-12-10T21:01:32Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Graph Edit Distance Reward: Learning to Edit Scene Graph [69.39048809061714]
We propose a new method to edit the scene graph according to the user instructions, which has never been explored.
To be specific, in order to learn editing scene graphs as the semantics given by texts, we propose a Graph Edit Distance Reward.
In the context of text-editing image retrieval, we validate the effectiveness of our method in CSS and CRIR dataset.
arXiv Detail & Related papers (2020-08-15T04:52:16Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.