ViQAgent: Zero-Shot Video Question Answering via Agent with Open-Vocabulary Grounding Validation
- URL: http://arxiv.org/abs/2505.15928v1
- Date: Wed, 21 May 2025 18:32:43 GMT
- Title: ViQAgent: Zero-Shot Video Question Answering via Agent with Open-Vocabulary Grounding Validation
- Authors: Tony Montes, Fernando Lozano,
- Abstract summary: This work presents an LLM-brained agent for zero-shot Video Question Answering (VideoQA)<n>It combines a Chain-of-Thought framework with grounding reasoning alongside YOLO-World to enhance object tracking and alignment.<n>This approach establishes a new state-of-the-art in VideoQA and Video Understanding, showing enhanced performance on NExT-QA, iVQA, and ActivityNet-QA benchmarks.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Video Question Answering (VideoQA) have introduced LLM-based agents, modular frameworks, and procedural solutions, yielding promising results. These systems use dynamic agents and memory-based mechanisms to break down complex tasks and refine answers. However, significant improvements remain in tracking objects for grounding over time and decision-making based on reasoning to better align object references with language model outputs, as newer models get better at both tasks. This work presents an LLM-brained agent for zero-shot Video Question Answering (VideoQA) that combines a Chain-of-Thought framework with grounding reasoning alongside YOLO-World to enhance object tracking and alignment. This approach establishes a new state-of-the-art in VideoQA and Video Understanding, showing enhanced performance on NExT-QA, iVQA, and ActivityNet-QA benchmarks. Our framework also enables cross-checking of grounding timeframes, improving accuracy and providing valuable support for verification and increased output reliability across multiple video domains. The code is available at https://github.com/t-montes/viqagent.
Related papers
- MAGNET: A Multi-agent Framework for Finding Audio-Visual Needles by Reasoning over Multi-Video Haystacks [67.31276358668424]
We introduce a novel task named AV-HaystacksQA, where the goal is to identify salient segments across different videos in response to a query and link them together to generate the most informative answer.<n> AVHaystacks is an audio-visual benchmark comprising 3100 annotated QA pairs designed to assess the capabilities of LMMs in multi-video retrieval and temporal grounding task.<n>We propose a model-agnostic, multi-agent framework to address this challenge, achieving up to 89% and 65% relative improvements over baseline methods on BLEU@4 and GPT evaluation scores in QA task on our proposed AVHaystack
arXiv Detail & Related papers (2025-06-08T06:34:29Z) - VideoMultiAgents: A Multi-Agent Framework for Video Question Answering [11.514596823413736]
Video Question Answering (VQA) inherently relies on multimodal reasoning.<n>We introduce VideoMultiAgents, a framework that integrates specialized agents for vision, scene graph analysis, and text processing.<n>Our approach is also supplemented with a question-guided caption generation, which produces captions that highlight objects, actions, and temporal transitions.
arXiv Detail & Related papers (2025-04-25T22:08:09Z) - ReasVQA: Advancing VideoQA with Imperfect Reasoning Process [38.4638171723351]
textbfReasVQA (Reasoning-enhanced Video Question Answering) is a novel approach that leverages reasoning processes generated by Multimodal Large Language Models (MLLMs) to improve the performance of VideoQA models.<n>We evaluate ReasVQA on three popular benchmarks, and our results establish new state-of-the-art performance with significant improvements of +2.9 on NExT-QA, +7.3 on STAR, and +5.9 on IntentQA.
arXiv Detail & Related papers (2025-01-23T10:35:22Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (Video QA) is a challenging video understanding task that requires models to comprehend entire videos.<n>Recent advancements in Multimodal Large Language Models (MLLMs) have transformed video QA by leveraging their exceptional commonsense reasoning capabilities.<n>We propose T-Former, a novel temporal modeling method that creates a question-guided temporal bridge between frame-wise visual perception and the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-26T17:53:14Z) - Eyes on the Road: State-of-the-Art Video Question Answering Models Assessment for Traffic Monitoring Tasks [0.0]
This study evaluates state-of-the-art VideoQA models using non-benchmark synthetic and real-world traffic sequences.<n>VideoLLaMA-2 advances with 57% accuracy, particularly in compositional reasoning and consistent answers.<n>These findings underscore VideoQA's potential in traffic monitoring but also emphasize the need for improvements in multi-object tracking, temporal reasoning, and compositional capabilities.
arXiv Detail & Related papers (2024-12-02T05:15:32Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - DVIS-DAQ: Improving Video Segmentation via Dynamic Anchor Queries [60.09774333024783]
We introduce Dynamic Anchor Queries (DAQ) to shorten the transition gap between the anchor and target queries.
We also introduce a query-level object Emergence and Disappearance Simulation (EDS) strategy, which unleashes DAQ's potential without any additional cost.
Experiments demonstrate that DVIS-DAQ achieves a new state-of-the-art (SOTA) performance on five mainstream video segmentation benchmarks.
arXiv Detail & Related papers (2024-03-29T17:58:50Z) - Can I Trust Your Answer? Visually Grounded Video Question Answering [88.11169242115416]
We study visually grounded VideoQA in response to the emerging trends of utilizing pretraining techniques for video-language understanding.
We construct NExT-GQA -- an extension of NExT-QA with 10.5$K$ temporal grounding labels tied to the original QA pairs.
arXiv Detail & Related papers (2023-09-04T03:06:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.