SLMEval: Entropy-Based Calibration for Human-Aligned Evaluation of Large Language Models
- URL: http://arxiv.org/abs/2505.16003v1
- Date: Wed, 21 May 2025 20:40:30 GMT
- Title: SLMEval: Entropy-Based Calibration for Human-Aligned Evaluation of Large Language Models
- Authors: Roland Daynauth, Christopher Clarke, Krisztian Flautner, Lingjia Tang, Jason Mars,
- Abstract summary: We propose SLMEval, a calibration method based on entropy over a small amount of human preference data.<n>It achieves strong correlation with human evaluations across two real-world production use cases and the public benchmark.<n> SLMEval reduces evaluation costs by 5-30x compared to GPT-4-based evaluators such as G-eval.
- Score: 7.8905223445925055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The LLM-as-a-Judge paradigm offers a scalable, reference-free approach for evaluating language models. Although several calibration techniques have been proposed to better align these evaluators with human judgment, prior studies focus primarily on narrow, well-structured benchmarks. As a result, it remains unclear whether such calibrations generalize to real-world, open-ended tasks. In this work, we show that SOTA calibrated evaluators often fail in these settings, exhibiting weak or even negative correlation with human judgments. To address this, we propose SLMEval, a novel and efficient calibration method based on entropy maximization over a small amount of human preference data. By estimating a latent distribution over model quality and reweighting evaluator scores accordingly, SLMEval achieves strong correlation with human evaluations across two real-world production use cases and the public benchmark. For example, on one such task, SLMEval achieves a Spearman correlation of 0.57 with human judgments, while G-Eval yields a negative correlation. In addition, SLMEval reduces evaluation costs by 5-30x compared to GPT-4-based calibrated evaluators such as G-eval.
Related papers
- Poor-Supervised Evaluation for SuperLLM via Mutual Consistency [20.138831477848615]
We propose the PoEM framework to conduct evaluation without accurate labels.
We first prove that the capability of a model can be equivalently assessed by the consistency between it and certain reference model.
To alleviate the insufficiencies of the conditions in reality, we introduce an algorithm that treats humans (when available) and the models under evaluation as reference models.
arXiv Detail & Related papers (2024-08-25T06:49:03Z) - Self-Taught Evaluators [77.92610887220594]
We present an approach that aims to im-proves without human annotations, using synthetic training data only.
Our Self-Taught Evaluator can improve a strong LLM from 75.4 to 88.3 on RewardBench.
arXiv Detail & Related papers (2024-08-05T17:57:02Z) - Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments [2.1370543868467275]
This follow-up paper explores methods to align Large Language Models evaluator preferences with human evaluations.
We employed Bayesian statistics and a t-test to quantify this bias and developed a recalibration procedure to adjust the GPTScorer.
Our findings significantly improve aligning the recalibrated LLM evaluator with human evaluations across multiple use cases.
arXiv Detail & Related papers (2024-07-05T09:26:40Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.<n>LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.<n>We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - On Diversified Preferences of Large Language Model Alignment [51.26149027399505]
This paper presents the first quantitative analysis of the experimental scaling law for reward models with varying sizes.
Our analysis reveals that the impact of diversified human preferences depends on both model size and data size.
Larger models with sufficient capacity mitigate the negative effects of diverse preferences, while smaller models struggle to accommodate them.
arXiv Detail & Related papers (2023-12-12T16:17:15Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - Evaluation Metrics in the Era of GPT-4: Reliably Evaluating Large
Language Models on Sequence to Sequence Tasks [9.801767683867125]
We provide a preliminary and hybrid evaluation on three NLP benchmarks using both automatic and human evaluation.
We find that ChatGPT consistently outperforms many other popular models according to human reviewers on the majority of metrics.
We also find that human reviewers rate the gold reference as much worse than the best models' outputs, indicating the poor quality of many popular benchmarks.
arXiv Detail & Related papers (2023-10-20T20:17:09Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
We propose AutoCalibrate, a multi-stage, gradient-free approach to calibrate and align an LLM-based evaluator toward human preference.
Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels.
Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration.
arXiv Detail & Related papers (2023-09-23T08:46:11Z) - G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment [64.01972723692587]
We present G-Eval, a framework of using large language models with chain-of-thoughts (CoT) and a form-filling paradigm to assess the quality of NLG outputs.
We show that G-Eval with GPT-4 as the backbone model achieves a Spearman correlation of 0.514 with human on summarization task, outperforming all previous methods by a large margin.
arXiv Detail & Related papers (2023-03-29T12:46:54Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
Existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale.
We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units.
We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems.
arXiv Detail & Related papers (2022-12-15T17:26:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.