Veracity Bias and Beyond: Uncovering LLMs' Hidden Beliefs in Problem-Solving Reasoning
- URL: http://arxiv.org/abs/2505.16128v2
- Date: Sun, 25 May 2025 02:52:06 GMT
- Title: Veracity Bias and Beyond: Uncovering LLMs' Hidden Beliefs in Problem-Solving Reasoning
- Authors: Yue Zhou, Barbara Di Eugenio,
- Abstract summary: Despite human value-aligned models' alignment against demographic stereotypes, they have been shown to exhibit biases under various social contexts.<n>We show two forms of such veracity biases: Attribution Bias, where models disproportionately attribute correct solutions to certain demographic groups, and Evaluation Bias, where models' assessment of identical solutions varies based on perceived demographic authorship.<n>Our findings indicate that demographic bias extends beyond surface-level stereotypes and social context provocations, raising concerns about LLMs' deployment in educational and evaluation settings.
- Score: 4.452208564152158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite LLMs' explicit alignment against demographic stereotypes, they have been shown to exhibit biases under various social contexts. In this work, we find that LLMs exhibit concerning biases in how they associate solution veracity with demographics. Through experiments across five human value-aligned LLMs on mathematics, coding, commonsense, and writing problems, we reveal two forms of such veracity biases: Attribution Bias, where models disproportionately attribute correct solutions to certain demographic groups, and Evaluation Bias, where models' assessment of identical solutions varies based on perceived demographic authorship. Our results show pervasive biases: LLMs consistently attribute fewer correct solutions and more incorrect ones to African-American groups in math and coding, while Asian authorships are least preferred in writing evaluation. In additional studies, we show LLMs automatically assign racially stereotypical colors to demographic groups in visualization code, suggesting these biases are deeply embedded in models' reasoning processes. Our findings indicate that demographic bias extends beyond surface-level stereotypes and social context provocations, raising concerns about LLMs' deployment in educational and evaluation settings.
Related papers
- The Biased Samaritan: LLM biases in Perceived Kindness [0.0]
Large Language Models (LLMs) have become ubiquitous in many fields.<n>This paper provides a novel method for evaluating the demographic biases of various generative AI models.
arXiv Detail & Related papers (2025-06-12T23:33:42Z) - Evaluating how LLM annotations represent diverse views on contentious topics [3.405231040967506]
We show that generative large language models (LLMs) tend to be biased in the same directions on the same demographic categories within the same datasets.<n>We conclude with a discussion of the implications for researchers and practitioners using LLMs for automated data annotation tasks.
arXiv Detail & Related papers (2025-03-29T22:53:15Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - LLMs are Biased Teachers: Evaluating LLM Bias in Personalized Education [6.354025374447606]
We evaluate large language models (LLMs) for bias in the personalized educational setting.<n>We reveal significant biases in how models generate and select educational content tailored to different demographic groups.
arXiv Detail & Related papers (2024-10-17T20:27:44Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear.
By including additional context in prompts, we analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected.
arXiv Detail & Related papers (2024-10-03T16:43:17Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
Social biases can manifest in language agency.
We introduce the novel Language Agency Bias Evaluation benchmark.
We unveil language agency social biases in 3 recent Large Language Model (LLM)-generated content.
arXiv Detail & Related papers (2024-04-16T12:27:54Z) - A Theory of LLM Sampling: Part Descriptive and Part Prescriptive [53.08398658452411]
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making.<n>We show that this sampling behavior resembles that of human decision-making.<n>We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Large Language Models are Geographically Biased [47.88767211956144]
We study what Large Language Models (LLMs) know about the world we live in through the lens of geography.
We show various problematic geographic biases, which we define as systemic errors in geospatial predictions.
arXiv Detail & Related papers (2024-02-05T02:32:09Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Sociodemographic Prompting is Not Yet an Effective Approach for Simulating Subjective Judgments with LLMs [13.744746481528711]
Large Language Models (LLMs) are widely used to simulate human responses across diverse contexts.<n>We evaluate nine popular LLMs on their ability to understand demographic differences in two subjective judgment tasks: politeness and offensiveness.<n>We find that in zero-shot settings, most models' predictions for both tasks align more closely with labels from White participants than those from Asian or Black participants.
arXiv Detail & Related papers (2023-11-16T10:02:24Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content.
This paper critically examines gender biases in LLM-generated reference letters.
arXiv Detail & Related papers (2023-10-13T16:12:57Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
This paper investigates bias along less-studied but still consequential, dimensions, such as age and beauty.
We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the "what is beautiful is good" bias found in people in experimental psychology.
arXiv Detail & Related papers (2023-09-16T07:07:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.