Training-Free Reasoning and Reflection in MLLMs
- URL: http://arxiv.org/abs/2505.16151v1
- Date: Thu, 22 May 2025 02:51:12 GMT
- Title: Training-Free Reasoning and Reflection in MLLMs
- Authors: Hongchen Wei, Zhenzhong Chen,
- Abstract summary: This paper introduces FRANK Model, a training-FRee ANd r1-liKe MLLM that imbues off-the-shelf MLLMs with reasoning and reflection abilities.<n>Our key insight is to decouple perception and reasoning across MLLM decoder layers.<n>To this end, we propose a layer-wise, Taylor-derived closed-form fusion mechanism that integrates reasoning capacity into deep decoder layers.
- Score: 45.134271969594614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Reasoning LLMs (e.g., DeepSeek-R1 and OpenAI-o1) have showcased impressive reasoning capabilities via reinforcement learning. However, extending these capabilities to Multimodal LLMs (MLLMs) is hampered by the prohibitive costs of retraining and the scarcity of high-quality, verifiable multimodal reasoning datasets. This paper introduces FRANK Model, a training-FRee ANd r1-liKe MLLM that imbues off-the-shelf MLLMs with reasoning and reflection abilities, without any gradient updates or extra supervision. Our key insight is to decouple perception and reasoning across MLLM decoder layers. Specifically, we observe that compared to the deeper decoder layers, the shallow decoder layers allocate more attention to visual tokens, while the deeper decoder layers concentrate on textual semantics. This observation motivates a hierarchical weight merging approach that combines a visual-pretrained MLLM with a reasoning-specialized LLM. To this end, we propose a layer-wise, Taylor-derived closed-form fusion mechanism that integrates reasoning capacity into deep decoder layers while preserving visual grounding in shallow decoder layers. Extensive experiments on challenging multimodal reasoning benchmarks demonstrate the effectiveness of our approach. On the MMMU benchmark, our model FRANK-38B achieves an accuracy of 69.2, outperforming the strongest baseline InternVL2.5-38B by +5.3, and even surpasses the proprietary GPT-4o model. Our project homepage is at: http://iip.whu.edu.cn/frank/index.html
Related papers
- Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward [87.06604760273372]
We propose Perception-R1, which introduces a novel visual perception reward that explicitly encourages MLLMs to perceive the visual content accurately.<n>We show that Perception-R1 achieves state-of-the-art performance on most benchmarks using only 1,442 training data.
arXiv Detail & Related papers (2025-06-08T16:48:42Z) - Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought [58.321044666612174]
Vad-R1 is an end-to-end MLLM-based framework for Video Anomaly Reasoning.<n>We design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies.<n>We also propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs.
arXiv Detail & Related papers (2025-05-26T12:05:16Z) - Dynamic Pyramid Network for Efficient Multimodal Large Language Model [11.864416286283399]
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks.<n>Recent efforts aim to compress the visual features to save the computational costs of MLLMs.<n>We propose a novel dynamic pyramid network (DPN) for efficient MLLMs.
arXiv Detail & Related papers (2025-03-26T08:44:11Z) - The Curse of Depth in Large Language Models [28.37870372690079]
In large language models, nearly half of the layers are less effective than expected.<n>LayerNorm Scaling (LNS) scales the variance of output of the layer normalization inversely by the square root of its depth.<n>LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance.
arXiv Detail & Related papers (2025-02-09T07:03:36Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
The standard practice for developing contemporary MLLMs is to feed features from vision encoder(s) into the LLM and train with natural language supervision.<n>We propose OLA-VLM, the first approach distilling knowledge into the LLM's hidden representations from a set of target visual representations.<n>We show that OLA-VLM boosts performance by an average margin of up to 2.5% on various benchmarks, with a notable improvement of 8.7% on the Depth task in CV-Bench.
arXiv Detail & Related papers (2024-12-12T18:55:18Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
We propose a training-free adaptive inference method for multi-modal LLMs.<n>With a minimalist design, our method can be applied to both video and image LLMs.<n>Under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding.
arXiv Detail & Related papers (2024-12-04T11:47:57Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Dense Connector for MLLMs [89.50595155217108]
We introduce the Dense Connector - a plug-and-play vision-language connector that significantly enhances existing MLLMs.
Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens.
Our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well.
arXiv Detail & Related papers (2024-05-22T16:25:03Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
Multimodal Large Language Models (MLLMs) have endowed LLMs with the ability to perceive and understand multi-modal signals.
Most of the existing MLLMs mainly adopt vision encoders pretrained on coarsely aligned image-text pairs, leading to insufficient extraction and reasoning of visual knowledge.
We propose a dual-Level vIsual knedgeOwl eNhanced Multimodal Large Language Model (LION), which empowers the MLLM by injecting visual knowledge in two levels.
arXiv Detail & Related papers (2023-11-20T15:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.